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大気組成 解析・予報の必要性
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大気組成データ同化の特徴

(Rood  2005;  Lahoz  et  al.,  2007)

• 様々なスケール（数秒から数10年）の現象が内在  

• 化学システムは頑固（Stiff）、局所平衡濃度へ 

• 初期値に加えて、排出量や化学反応係数の修正が重要

• 初期値の高精度化：大気汚染・UV・オゾンホール予報  

• 放射過程・背景誤差共分散を考慮した気象解析の向上 

• 再解析データ： 人間活動と大気組成変動、放射伝達計算、気

候モデル・気象再解析へのインプット

大気組成データ同化の必要性
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大気組成データ同化システム

NWPベース （現業センター） 

• 化学過程は簡略化して表現。主に成層圏オゾンのみを対象。 

• 放射過程を介して気象解析を改善することが目的。

CTMベース （主に研究機関） 

• 複雑な化学・輸送過程を含み、様々な物質を対象。 

• 大気組成変動要因の理解、化学天気予報などのため。 

• 気象場は外部データ。排出量推定にも応用可能。



ERA-Interim Sources of Profile and Total Ozone 

SPARC – DA Workshop                               Brussels, Belgium                                          June 20-22, 2011 

NWP



Observa@ons used in ERA‐Interim:    Data counts NWP



Global O3MR Anomalies 

SPARC – DA Workshop                               Brussels, Belgium                                          June 20-22, 2011 

NWP

CFSR

JRA25

MERRA

ERA-I



Global Temperature Anomalies 

CFSR 

ERA‐40 

JRA‐25  ERA‐I 

MERRA 

SPARC – DA Workshop                               Brussels, Belgium                                          June 20-22, 2011 

NWP



Available level 2 ozone data 
(UV-VIS)

TOMS Nimbus 7: 1978-1993 TOMS v.8 NASA

TOMS EarthProbe: 1996-2002 TOMS v.8 NASA

SBUV 7, 9a, 9d, 11, 16: 1978-2004 SBUV v.8 NOAA

GOME : 1995-2008 GDP v.4 ESA/DLR

GOME : 1995-2008 TOGOMI v1.2 KNMI

SCIAMACHY : 2002-2008 SGP v.3 ESA/DLR

SCIAMACHY : 2002-2008 TOSOMI v.0.43 KNMI

OMI : 2004-2008 TOMS v.3 NASA

OMI : 2004-2008 DOAS v.3 KNMI

GOME-2 : 2007-2008 GDP v.4.2 EUMETSAT/DLR

WOUDC: 1978-2008 Brewer(3,4), Dobson, Filter
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Inconsistencies between 
satellite data sets

• “Satellite minus ground” observation reveals:

– Out-of-phase seasonal dependencies

– Trends

– Offsets

Corrections satellite data

Expected dependencies of satellite data

• Solar zenith angle (DOAS-AMF, O3 cross-section)

• Viewing zenith angle (scan mirror)

• Effective temperature (O3 cross-section)

• Time (instrument degradation) 

• Offset (calibration)

CTM

KNMI 30-year multi sensor reanalysis of total ozone
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Slide 4 

The global observing system for atmospheric 
composition 

Ground-based stations 

Airplanes Satellites 
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Trains 

Balloons 

… 

Slide 3 

Monitoring Atmospheric Composition and Climate – Interim 
Implementation 

MACC-II is the third in a series of FP6 & 7 EU projects (since 2005), benefiting also 
from earlier ESA/GSE projects. It is coordinated by ECMWF and the consortium 
comprises 36 partners from 13 countries. MACC-II runs until end of July 2014, 
when the operational Copernicus Atmosphere Service starts. 

Weather services 

Atmospheric 
environmental 
services 

Long-range pollutant 
transport 

European air quality 

Dust outbreaks 

Solar energy 

UV radiation 

Climate forcing by gases 
and aerosols 

ͻ�ͻ ͻ  
Environmental agencies 

provide data & 
information on 

大気組成に関するサービス：!
気象予報と環境政策と密接

NWP&CTM
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CO2$and$CH4$
surface$flux$
inversions$$$$$$

Reanalysis$of$Atmospheric$
Composi=on$(2003A2011)

Aerosol Optical Depth

Methane

hPp://www.gmes8atmosphere.eu
Retrospec3ve!Service!Provision

30$years$ozone$
layer$records

900+&users

NWP&CTM
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Biomass$burning$
emissions

100+&users&and&obsAIRveNWP&CTM
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OMI 
SBUV/2 
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SBUV/2 
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Ozone 

CO 
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Combining many observations 

Near-real-time observations for a 12-hour period 

NWP&CTM



�18

Balance of model and observations 

MACC Reanalysis ERA-Interim Reanalysis 

Limb-sounding ozone data assimilated from August 2004 (MLS) are clearly 
improving stratospheric ozone.  

Chemical modelling is needed for correct representation of tropospheric 
ozone. 
 

Switch to near-real-time version of MLS observations, which misses 
lowest layers. 
 

NWP&CTM
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Slide 2 

ECMWF Workshop October 2013 Slide 2 

ECMWF Strategy 
2011 - 2020 

The principal goal of ECMWF in the 
next ten years is to improve its 
global medium-range weather 
forecasting systems, at the current 
rapid rates, in order to: 
• Provide Member States’ National 
Meteorological Services with reliable 
forecasts of severe weather across 
the medium-range. 
• Meet Member States’ requirements 
for high quality near-surface weather 
forecast products such as 
precipitation, wind and temperature. 

There are also various 
complementary goals, such as 
climate monitoring and atmospheric 
composition forecasting. 

Slide 1 

Workshop  
on  

Parameter Estimation and Inverse 
Modelling for Atmospheric 

Composition 

Richard Engelen 
 

Anna Agusti-Panareda, Gianpaolo Balsamo,  Anton 
Beljaars, Johannes Flemming, Sebastien Massart, 

Vincent-Henri Peuch, Samuel Remy 

ECMWF Workshop October 2013 Slide 1 

更なる発展に向けて!
2013年10月, ECMWFにて
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Institute/Project Species Region Assimilation Notes

NWP	  operational	  
centers

O3 Stratosphere	  ─ mainly	  4D-‐VAR Simplified	  
chemistry

C-‐IFS	  
(ECMWF	  MACC) Various Troposphere/

Stratosphere	  ─
coupled	  to	  IFS	  4D-‐

VAR
Multi-‐models,	  w/o	  
emission	  inversion

NASA	  GMAO Various	  	  
(EOS-‐Aura)

Troposphere/
Stratosphere	  ─

Incremental	  3D-‐
VAR

Simplified	  
chemistry

NASA	  JPL/Harvard	  
Univ. Mainly	  O3,	  CO

Troposphere/
Stratosphere	  ─ 3D-‐VAR

NCAR Mainly	  CO Troposphere
Ensemble	  Kalman	  

filter
w/	  emission	  
inversion

KNMI O3
Troposphere/
Stratosphere	  ─

Sub-‐optimal	  
Kalman	  filter

30	  years,	  Simplified	  
chemistry

DARC/Reading Mainly	  O3	  
(MIPAS)

Stratosphere	  ─ 3D-‐VAR

BASCOE	  
(BIRA-‐IASB) Various Stratosphere	  ─ 4D-‐VAR

JAMSTEC Various Troposphere/LS
Ensemble	  Kalman	  

filter
w/	  emission	  
inversion

Global	  chemical	  data	  assimilaXon	  systems
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Tropospheric	  chemistry	  data	  assimilation

✓	  The	  use	  of	  data	  assimila;on	  for	  atmospheric	  chemistry,	  especially	  for	  
short-‐lived	  chemical	  species,	  is	  s;ll	  challenging	  (e.g.,	  MACC).	  	  

✓	  A	  large	  part	  of	  the	  chemical	  system	  is	  not	  sensi;ve	  to	  ini;al	  condi;ons,	  
but	  is	  sensi;ve	  to	  the	  model	  parameters	  (e.g.,	  reac;on	  rates,	  emissions).	  	  

✓→	  Simultaneous	  adjustment	  of	  model	  parameters	  and	  concentra;ons	  is	  
a	  powerful	  framework.	  

✓	  The	  advantage	  of	  Ensemble	  Kalman	  filter	  (EnKF)	  is	  its	  easy	  
implementa;on	  for	  complicated	  systems	  and	  parameter	  es;ma;ons.	  
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革を遂げたのである。そして、その科学発信力は、世界のトップクラスの研究

機関と肩を並べるまでになった。したがって、1996−2010 年（第 3 期）は、「科

学研究発展期－科学と技術を融合させた研究体制の確立－」ということができ

る。 

 この時期、世界は大きく変わっていった。その象徴的事件は 2001 年 9 月 11

日の同時多発テロである。世界は激動の時代へと突入。人々の価値観、時代観、

社会観など、我々の考え方の基軸となる

思想や体系が流動化した。また、新興国

の台頭によって、世界の経済、物流、人

口構造などの社会経済構造が大きく変化

した。科学技術もまた、変化の激しい社

会への対応や、危機管理への貢献（たと

えば BSE 対応、パンデミック対策など）

などの即効性のある目標への変換が要請

されるようになってきた。 

 

今そして次の 15-20 年 

2011 年 3 月 11 日、M（マグニチュード）

9.0 の巨大地震・津波が日本を襲った。こ

の未曾有の出来事は、日本の将来に対して

極めて重い課題を突きつけた。これまでの

想定を大きく上回る地震と津波の発生は、

改めて自然災害の脅威と科学技術の限界を

痛感させた。あわせて、福島第一原子力発

電所事故に伴う放射性物質の放出・拡散に

よる海洋生物への影響などは、我が国のみ

ならず世界的にも懸念されている。このような事態に、JAMSTEC は有する能力

を可能な限り活用し、緊急調査の実施や海域モニタリングへの協力を行ってき

たが、同時に科学技術が果たすべき役割や限界を真摯に考える転機ともなった。 

このような我が国の立場を考慮すれば、JAMSTEC の果たすべき役割、すなわ

ちそのミッションは明確である。JAMSTEC は「新たな科学技術で海洋立国日本

を支え、国民、人類の向上に貢献する」。このためには、私たちはこれまでの３

つの時代の成果を経て、世界の誰も行ったことのない場所、誰も考えつかなか

ったような未踏の領域を切り開くことにより、世界トップの研究機関になるべ

きである。それがミッション達成の近道であると確信する。私たちは、次の 15

年、新たな地平を目指して、今、旅立たなければならない。 

Global	  CTM	  “CHASER”

+

Observations

Analysis

Guess

Observation

Analysis

Ensemble forecast

Ensemble forecast

Ensemble Kalman Filter

Miyoshi pers. comm.

52008年3月4日火曜日

Ensemble	  Kalman	  Filter	  Data	  
Assimilation

OMI	  
TES	  
MLS	  
MOPITT

Chemical	  concentra.ons,	  surface	  emissions,	  
lightning	  sources

(Miyazaki	  et	  al.,	  2012a,	  2012b)



Assimilation	  scheme LETKF	  (Hunt	  et.	  al.,	  2007),	  48	  members

Forecast	  model CHASER	  (Sudo	  et	  al.,	  2002),	  47	  species	  &	  88	  reactions,	  T42L32

A	  priori	  emissions EDGAR4.2	  +	  GFED3.1	  +	  GEIA

State	  vector NOx	  &	  CO	  emissions,	  lightning	  NOx,	  35	  chemical	  species

Obs	  operator Averaging	  kernel	  and	  a	  priori	  information

Super	  Obs applied	  for	  OMI	  NO2	  and	  MOPPIT	  CO	  data

Cycle 100	  min.

Techniques Spatial	  &	  variable	  covariance	  localization,	  covariance	  inflation

Assimilated	  data
OMI	  NO2	  (DOMINO2),	  TES	  O3	  (ver.	  4),	  MOPITT	  CO	  (ver.	  5),	  MLS	  O3	  

&	  HNO3	  (ver.	  3.3)

Validation	  data
SCIAMACHY	  NO2,	  GOME-‐2	  NO2,	  TES	  CO,	  	  

Ozonesonde,	  Aircraft	  (IAGOS,	  NASA,	  HIPPO)	  etc

CHASER-‐DAS	  (Miyazaki	  et	  al.,	  2012a,	  2012b,	  2013a,	  2013b)



F1          F2         F3          F4           F5          F6          F7           F8          F9          F10       F11

4 days * 11 steps = 44 days assimilation window

obs obs

ACTM Forecast

Analysis

F1          F2         F3          F4           F5          F6          F7           F8          F9          F10       F11

ACTM Forecast

obs obsAnalysis

6 hours * 16 steps

JAMSTEC carbon DA system ver.2

Flux +!
Conc.
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Figure 2. (a) The TES CO a priori profile and its standard deviation, provided by MOZART-3, for the
latitude 54!N–18!N zone, and (b) the MOPITT a priori profile and its standard deviation. The TES and
MOPITT standard deviations are obtained from the square root of the diagonal terms of TES and
MOPITT covariance matrices, respectively. For comparison purposes, the MOPITT covariance matrix is
interpolated to a 21 level TES pressure grid between 1000 hPa and 146.8 hPa (see Table 1).

Figure 3. Averaging kernels for 1 July 2006 for (a) MOPITT (AMOP) at MOPITT pressure levels, (b) TES
(ATES) at the TES pressure levels closest to the MOPITT pressure levels, (c) pressure-layer-normalized
averaging kernels for MOPITT (AMOP

N ), and (d) pressure-layer-normalized averaging kernels for TES
(ATES

N ). The unit of the pressure-layer-normalized averaging kernels is hPa!1, and TES averaging kernels
are plotted on essure levels from 1000 to 150 hPa.
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[8] The averaging kernels give the sensitivity of the
retrieved state to the true state of the atmosphere. The trace
of the averaging kernel matrix gives a measure of the number
of independent pieces of information available in the meas-
urements, more commonly referred to as the degrees of
freedom for signal (DOFS) [Rodgers, 2000]. Figure 1 shows
TES ozone and CO retrieval characteristics for 15 August
2006. On average, for ozone there are between three and
four DOFS for the full retrieved profile (shown by the black
crosses in Figure 1a) and less than 1.5 DOFS for the
tropospheric part of the profile north of 20!S. Discontinu-
ities in the DOFS at different latitudes are due to changes in
the constraint matrix used in the retrieval [Kulawik et al.,
2006; Osterman et al., 2008]. The TES CO retrievals are
sensitive primarily to the troposphere, as shown in

Figure 1c, with between 1 and 1.5 DOFS for the tropospheric
profile. The stratospheric retrieval adds approximately 0.5
DOFS to the tropospheric profile retrieved for CO.
[9] Averaging kernels for the troposphere and lower

stratosphere for profiles of ozone and CO retrieved over
the southeastern USA at 30!N and 87!Won 15 August 2006
are shown in Figures 1b and 1d respectively. Of the total
3.92 DOFS for the retrieved profile of ozone, 1.15 comes
from the troposphere indicating a reasonable level of
sensitivity in the troposphere, particularly between 1000
and 500 hPa as shown by the averaging kernels colored
red. In the midtroposphere and upper troposphere/lower
stratosphere, the information is spread over a wider vertical
range, illustrating the coarse vertical resolution. For the CO
retrieval, the troposphere contributes 1.12 to the total of 1.58

Figure 1. TES ozone and CO retrieval characteristics for 15 August 2006. Figures 1a and 1c show the
degrees of freedom for signal (DOFS) for both the full (black crosses) and tropospheric (red
crosses) ozone and CO profiles, respectively, as a function of latitude. Figures 1b and 1d show
an example of an ozone and a CO retrieval, respectively, at 30!N and 87!W with averaging kernels for
the lower troposphere (red), the midtroposphere (green), and the upper troposphere/lower stratosphere
(blue).
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D18307TES	  O3 OMI	  NO2
MOPITT	  CO MLS	  O3,HNO3

Observa.on	  operators

K. Miyazaki et al.: Simultaneous assimilation of tropospheric composition 3

PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric
O

3

profiles (Foret et al., 2009). MOPPIT is suitable for
global CO emission estimates because of its good global
coverage. MLS is expected to provide important constraints
on the background concentrations of O

3

, HNO
3

, and other
O

3

precursors in the UTLS together with lightning NO
x

sources. The high temporal and spatial resolutions of the
OMI are useful to optimize NO

x

emissions on a daily ba-
sis. The assimilation results are validated against indepen-
dent data, obtained from five satellite instruments, MLS/OMI
(tropospheric O

3

column, TOC), TES (CO), and GOME-
2 and SCIAMACHY (tropospheric NO

2

column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)

The averaging kernel matrix is used to define the sensitiv-
ity of the estimated state to changes to the true state, while
the trace of the averaging kernel matrix gives a measure of
the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
or only weakly, biased by the a priori profile xa (Eskes and
Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO
2

column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO

2

column retrievals, with their
daily global coverage, are effective to constrain global NO

x

emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NO

x

sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO

2

data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO

2

retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO

2

columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation
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PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric
O

3

profiles (Foret et al., 2009). MOPPIT is suitable for
global CO emission estimates because of its good global
coverage. MLS is expected to provide important constraints
on the background concentrations of O

3

, HNO
3

, and other
O

3

precursors in the UTLS together with lightning NO
x

sources. The high temporal and spatial resolutions of the
OMI are useful to optimize NO

x

emissions on a daily ba-
sis. The assimilation results are validated against indepen-
dent data, obtained from five satellite instruments, MLS/OMI
(tropospheric O

3

column, TOC), TES (CO), and GOME-
2 and SCIAMACHY (tropospheric NO

2

column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)

The averaging kernel matrix is used to define the sensitiv-
ity of the estimated state to changes to the true state, while
the trace of the averaging kernel matrix gives a measure of
the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
or only weakly, biased by the a priori profile xa (Eskes and
Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO
2

column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO

2

column retrievals, with their
daily global coverage, are effective to constrain global NO

x

emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NO

x

sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO

2

data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO

2

retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO

2

columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation

•	  The	  observa;on	  operator	  (H)	  converts	  the	  model	  profiles	  to	  the	  profile	  that	  would	  
be	  retrieved	  from	  satellite	  measurements.

(Rodgers,	  2000;	  	  
Eskes	  and	  Boersma,	  2003)

•	  The	  model-‐satellite	  difference	  (the	  innova;on)	  is	  not	  biased	  by	  the	  a	  priori	  profile

•	  The	  observa;onal	  error	  matrix	  (R)	  in	  each	  retrieval	  includes	  smoothing	  error,	  systema;c	  error,	  
measurement	  error,	  and	  representa;veness	  error.
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40% of the a priori emission. Note that the emission anal-
ysis is generally no longer sensitive to the initial error after
some (e.g. several weeks) assimilation cycles. Only the com-
bined total emission is optimized in the analysis. This is to
reduce the degree of freedom in the analysis and to avoid
the difficulty associated with estimating background errors
for each category source separately. The uncertainty in the
a posteriori emission is reduced if the analysis converges to
a true state, which is represented by the analysis spread in
the EnKF data assimilation. For instance, in January, the
mean analysis spread becomes about 30–40% of the initial
spread after some assimilation cycles over northern Europe,
the United States North, America, eastern China, India, and
northern Africa, demonstrating significant reductions in the
emission uncertainty through the data assimilation over these
areas. However, since the analysis spread is artificially in-
flated to the predefined constant value during the analysis
step in our system, this information is not used to measure
the a posteriori uncertainty. Instead, the standard deviations
of the estimated daily emissions during the analysis period
are used as the uncertainty information. Detailed analyses
on the analysis spread information will be performed using
more advanced inflation techniques in future studies (see also
discussions in Sect. 4.2).
The surface emission factor is analyzed and updated us-

ing observations at an analysis interval of every 100min (i.e.
every orbit cycle of OMI observations). This setting is use-
ful to reduce the time discrepancy between the observation
and the model in the data assimilation. Tropospheric NO2
shows a distinct diurnal variation, and any time discrepancy
will result in serious model error.

2.3.3 Super-observation approach

The spatial resolution of the OMI data (=13 km⇥ 24 km) is
much finer than that of the CHASER model grid (=2.8�).
Thus, there are large representativeness errors in the model
because of unresolved small-scale variations. To fill the spa-
tial scale gaps and to produce more representative data, a
super-observation approach has been developed. The spa-
tial resolution of the super-observation was set to be 2.5�, al-
most equivalent to the CHASER model resolution. Note that
the spatial distribution of the super-observation is constant,
whereas the CHASER uses a Gaussian (variable) grid. A
super-observation is generated by averaging all data located
within a super-observation grid cell;

y =
 

mX

l=1
wlyl

!, 
mX

l=1
wl

!

, (10)

where y is the super-observation concentration; yl is the con-
centration of individual data; wl is the weighting factor; m is
the number of observations within a super-observation grid.
The weighting factor for individual data, wl , is estimated as
the ratio of the coverage area by individual data pixels and the
total coverage area (sum of the coverage area by all data used

for generating a super observation) for a super-observation
grid; i.e. data with high coverage are assumed to be more re-
liable (i.e. largerwl). The same weighting factors are applied
for averaging the AK.
The measurement error for the super-observation is com-

puted as in Eskes et al. (2003),

�super,mean=
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1�c

m
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in which the observation error (�l) is averaged over a grid
with the weight (wl), and the averaged error is multiplied
by the error correlation (c) among data. The error correla-
tion determines the quality of the super-observation, as illus-
trated in Fig. 1a. We apply 15% error correlation, although
there is no evidence for this value. Errors in for instance the
cloud, albedo and aerosol treatment in the NO2 retrieval are
typically correlated in space, but a quantitative number for
this correlation is difficult to estimate. The super-observation
measurement error also decreases as the number of obser-
vations used for the super-observation increases. A typical
number of OMI observations used for a super-observation
is about 120–250, resulting in about 60% reduction of the
mean measurement error.
The representativeness error is also considered if the

super-observation grid is not fully covered by OMI pixels.
A representativeness error as a function of the OMI cov-
erage was estimated based on grid cells which were well-
covered by OMI pixels (i.e. more than 90% coverage, ex-
cluding remote areas where the mean concentration is less
than 0.5⇥ 1015 molec. cm�2). For these well-covered cells,
we artificially decreased the coverage by randomly reducing
the number of observations used for constructing a super-
observation. Then, a representativeness error factor (frep) is
estimated based on the relationships between the coverage
area (↵, 0< ↵  1) and the super-observation concentration
as follow;

frep(↵) =
�����
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m
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↵⇥mX

l=1
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For coarse grid cells completely covered by OMI observa-
tion footprints (↵ = 1), this representativeness error is zero.
For cells covered by just one OMI pixel the representativity
error approaches the variability of individual measurements
around the grid cell mean. The mean representativeness error
factor averaged over the globe and over a month almost lin-
early increases as the coverage decreases, with a steeper in-
crease for coverage area less than 10% (Fig. 1b). The mean
averaged function is applied to estimate the representative-
ness error of each super-observation according to its cover-
age areas (↵):

�super,rep= frep(↵)⇥y (13)

where the area dependence of the representativeness error
function was neglected. Finally, the total super-observation
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40% of the a priori emission. Note that the emission anal-
ysis is generally no longer sensitive to the initial error after
some (e.g. several weeks) assimilation cycles. Only the com-
bined total emission is optimized in the analysis. This is to
reduce the degree of freedom in the analysis and to avoid
the difficulty associated with estimating background errors
for each category source separately. The uncertainty in the
a posteriori emission is reduced if the analysis converges to
a true state, which is represented by the analysis spread in
the EnKF data assimilation. For instance, in January, the
mean analysis spread becomes about 30–40% of the initial
spread after some assimilation cycles over northern Europe,
the United States North, America, eastern China, India, and
northern Africa, demonstrating significant reductions in the
emission uncertainty through the data assimilation over these
areas. However, since the analysis spread is artificially in-
flated to the predefined constant value during the analysis
step in our system, this information is not used to measure
the a posteriori uncertainty. Instead, the standard deviations
of the estimated daily emissions during the analysis period
are used as the uncertainty information. Detailed analyses
on the analysis spread information will be performed using
more advanced inflation techniques in future studies (see also
discussions in Sect. 4.2).
The surface emission factor is analyzed and updated us-

ing observations at an analysis interval of every 100min (i.e.
every orbit cycle of OMI observations). This setting is use-
ful to reduce the time discrepancy between the observation
and the model in the data assimilation. Tropospheric NO2
shows a distinct diurnal variation, and any time discrepancy
will result in serious model error.

2.3.3 Super-observation approach

The spatial resolution of the OMI data (=13 km⇥ 24 km) is
much finer than that of the CHASER model grid (=2.8�).
Thus, there are large representativeness errors in the model
because of unresolved small-scale variations. To fill the spa-
tial scale gaps and to produce more representative data, a
super-observation approach has been developed. The spa-
tial resolution of the super-observation was set to be 2.5�, al-
most equivalent to the CHASER model resolution. Note that
the spatial distribution of the super-observation is constant,
whereas the CHASER uses a Gaussian (variable) grid. A
super-observation is generated by averaging all data located
within a super-observation grid cell;

y =
 

mX

l=1
wlyl

!, 
mX

l=1
wl
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, (10)

where y is the super-observation concentration; yl is the con-
centration of individual data; wl is the weighting factor; m is
the number of observations within a super-observation grid.
The weighting factor for individual data, wl , is estimated as
the ratio of the coverage area by individual data pixels and the
total coverage area (sum of the coverage area by all data used

for generating a super observation) for a super-observation
grid; i.e. data with high coverage are assumed to be more re-
liable (i.e. largerwl). The same weighting factors are applied
for averaging the AK.
The measurement error for the super-observation is com-

puted as in Eskes et al. (2003),

�super,mean=
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+c, (11)

in which the observation error (�l) is averaged over a grid
with the weight (wl), and the averaged error is multiplied
by the error correlation (c) among data. The error correla-
tion determines the quality of the super-observation, as illus-
trated in Fig. 1a. We apply 15% error correlation, although
there is no evidence for this value. Errors in for instance the
cloud, albedo and aerosol treatment in the NO2 retrieval are
typically correlated in space, but a quantitative number for
this correlation is difficult to estimate. The super-observation
measurement error also decreases as the number of obser-
vations used for the super-observation increases. A typical
number of OMI observations used for a super-observation
is about 120–250, resulting in about 60% reduction of the
mean measurement error.
The representativeness error is also considered if the

super-observation grid is not fully covered by OMI pixels.
A representativeness error as a function of the OMI cov-
erage was estimated based on grid cells which were well-
covered by OMI pixels (i.e. more than 90% coverage, ex-
cluding remote areas where the mean concentration is less
than 0.5⇥ 1015 molec. cm�2). For these well-covered cells,
we artificially decreased the coverage by randomly reducing
the number of observations used for constructing a super-
observation. Then, a representativeness error factor (frep) is
estimated based on the relationships between the coverage
area (↵, 0< ↵  1) and the super-observation concentration
as follow;

frep(↵) =
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For coarse grid cells completely covered by OMI observa-
tion footprints (↵ = 1), this representativeness error is zero.
For cells covered by just one OMI pixel the representativity
error approaches the variability of individual measurements
around the grid cell mean. The mean representativeness error
factor averaged over the globe and over a month almost lin-
early increases as the coverage decreases, with a steeper in-
crease for coverage area less than 10% (Fig. 1b). The mean
averaged function is applied to estimate the representative-
ness error of each super-observation according to its cover-
age areas (↵):

�super,rep= frep(↵)⇥y (13)

where the area dependence of the representativeness error
function was neglected. Finally, the total super-observation
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40% of the a priori emission. Note that the emission anal-
ysis is generally no longer sensitive to the initial error after
some (e.g. several weeks) assimilation cycles. Only the com-
bined total emission is optimized in the analysis. This is to
reduce the degree of freedom in the analysis and to avoid
the difficulty associated with estimating background errors
for each category source separately. The uncertainty in the
a posteriori emission is reduced if the analysis converges to
a true state, which is represented by the analysis spread in
the EnKF data assimilation. For instance, in January, the
mean analysis spread becomes about 30–40% of the initial
spread after some assimilation cycles over northern Europe,
the United States North, America, eastern China, India, and
northern Africa, demonstrating significant reductions in the
emission uncertainty through the data assimilation over these
areas. However, since the analysis spread is artificially in-
flated to the predefined constant value during the analysis
step in our system, this information is not used to measure
the a posteriori uncertainty. Instead, the standard deviations
of the estimated daily emissions during the analysis period
are used as the uncertainty information. Detailed analyses
on the analysis spread information will be performed using
more advanced inflation techniques in future studies (see also
discussions in Sect. 4.2).
The surface emission factor is analyzed and updated us-

ing observations at an analysis interval of every 100min (i.e.
every orbit cycle of OMI observations). This setting is use-
ful to reduce the time discrepancy between the observation
and the model in the data assimilation. Tropospheric NO2
shows a distinct diurnal variation, and any time discrepancy
will result in serious model error.

2.3.3 Super-observation approach

The spatial resolution of the OMI data (=13 km⇥ 24 km) is
much finer than that of the CHASER model grid (=2.8�).
Thus, there are large representativeness errors in the model
because of unresolved small-scale variations. To fill the spa-
tial scale gaps and to produce more representative data, a
super-observation approach has been developed. The spa-
tial resolution of the super-observation was set to be 2.5�, al-
most equivalent to the CHASER model resolution. Note that
the spatial distribution of the super-observation is constant,
whereas the CHASER uses a Gaussian (variable) grid. A
super-observation is generated by averaging all data located
within a super-observation grid cell;

y =
 

mX

l=1
wlyl
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l=1
wl
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, (10)

where y is the super-observation concentration; yl is the con-
centration of individual data; wl is the weighting factor; m is
the number of observations within a super-observation grid.
The weighting factor for individual data, wl , is estimated as
the ratio of the coverage area by individual data pixels and the
total coverage area (sum of the coverage area by all data used

for generating a super observation) for a super-observation
grid; i.e. data with high coverage are assumed to be more re-
liable (i.e. largerwl). The same weighting factors are applied
for averaging the AK.
The measurement error for the super-observation is com-

puted as in Eskes et al. (2003),

�super,mean=
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in which the observation error (�l) is averaged over a grid
with the weight (wl), and the averaged error is multiplied
by the error correlation (c) among data. The error correla-
tion determines the quality of the super-observation, as illus-
trated in Fig. 1a. We apply 15% error correlation, although
there is no evidence for this value. Errors in for instance the
cloud, albedo and aerosol treatment in the NO2 retrieval are
typically correlated in space, but a quantitative number for
this correlation is difficult to estimate. The super-observation
measurement error also decreases as the number of obser-
vations used for the super-observation increases. A typical
number of OMI observations used for a super-observation
is about 120–250, resulting in about 60% reduction of the
mean measurement error.
The representativeness error is also considered if the

super-observation grid is not fully covered by OMI pixels.
A representativeness error as a function of the OMI cov-
erage was estimated based on grid cells which were well-
covered by OMI pixels (i.e. more than 90% coverage, ex-
cluding remote areas where the mean concentration is less
than 0.5⇥ 1015 molec. cm�2). For these well-covered cells,
we artificially decreased the coverage by randomly reducing
the number of observations used for constructing a super-
observation. Then, a representativeness error factor (frep) is
estimated based on the relationships between the coverage
area (↵, 0< ↵  1) and the super-observation concentration
as follow;

frep(↵) =
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For coarse grid cells completely covered by OMI observa-
tion footprints (↵ = 1), this representativeness error is zero.
For cells covered by just one OMI pixel the representativity
error approaches the variability of individual measurements
around the grid cell mean. The mean representativeness error
factor averaged over the globe and over a month almost lin-
early increases as the coverage decreases, with a steeper in-
crease for coverage area less than 10% (Fig. 1b). The mean
averaged function is applied to estimate the representative-
ness error of each super-observation according to its cover-
age areas (↵):

�super,rep= frep(↵)⇥y (13)

where the area dependence of the representativeness error
function was neglected. Finally, the total super-observation
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Fig. 1. (a) The error reduction factor for the super-observation as a
function of number of observations, m, for different sub-grid error
correlations, c = 0 (dotted line) and 15% (solid line). (b) The rep-
resentativeness error multiplication factor frep as a function of the
coverage of the grid cell by OMI observations. See Eqs. (11) and
(12) and Sect. 2.3.3 for details.

error is computed as a combination of the measurement error
and the representativeness error,

q
� 2super,mean+� 2super,rep.

3 Simulated and retrieved tropospheric NO2 columns

Here we investigate the performance of the model and satel-
lite retrievals. The AK has been applied to the CHASER
profiles to compare with satellite retrievals precisely. The
CHASER concentrations are interpolated to the retrieval pix-
els at the local overpass time of the satellite, and then both
the retrieved and simulated concentrations are mapped onto
a same horizontal resolution of 2.5⇥2.5�.

3.1 Global distribution

Figure 2 compares global distributions of annual-mean tro-
pospheric NO2 columns obtained from the OMI retrievals,
the SCIAMACHY retrieval, and the CHASER simulation at
the local overpass time of the retrievals (10:00 and 13:30, re-
spectively). The retrievals and the model show very similar
spatial distributions. Large-scale pollution with high con-
centrations is observed over eastern China, Europe, and the
eastern United States. High concentrations are also found
over the Highveld region of southern Africa, central Africa,
Japan, South Korea, India, Southeast Asia, and other mega
cities. Low concentrations, mostly smaller than the OMI
noise level, are observed over the oceans and remote regions.
Note that the annual-mean distribution in both the model
and retrievals may be positively biased compared to the true
annual-mean local time NO2 concentration. This occurs es-
pecially over tropical regions, since the sampling under clear
sky condition leads to relatively fewer observations during
the wet seasons than during the dry seasons (van Noije et al.,
2006).
The OMI retrievals agree well with the SCIAMACHY

retrieval, with a global spatial correlation of 0.90–0.93, a
global mean root-mean-square error (RMSE) of about 0.35–
0.66⇥ 1015 molec. cm�2, and the global mean bias (OMImi-
nus SCIAMACHY) of �0.02–0.12⇥ 1015 molec. cm�2 for
the monthly mean concentration. The OMI mean differ-
ence compared to the SCIAMACHY is mostly positive and
is larger for DOMINO v1 than DOMINO v2, whereas the
RMSE compared to the SCIAMACHY retrieval is higher for
DOMINO v2 than DOMINO v1. Higher concentrations are
observed in DOMINO v1 than in DOMINO v2 over north-
ern Europe, the northern-eastern United States, and eastern
China, with a mean difference of about 10–30% (Fig. 2).
Apart from the global mean, the SCIAMACHY retrieval
shows higher NO2 concentrations than the OMI retrievals
over urban areas around megacities and lower concentrations
over biomass burning regions (Boersma et al., 2008b), prob-
ably mainly as a result of the difference in observation time.
Although CHASER reproduces well the general features

of the observed NO2 patterns (with a global spatial corre-
lation of 0.71–0.89 depending on season and retrieval, sim-
ilar to that estimated using other global CTMs (van Noije
et al., 2006; Huijnen et al., 2010), systematic differences ex-
ist between the model and retrievals (Table 1). The model
is generally negatively biased relative to the OMI retrievals,
but is positively biased relative to the SCIAMACHY re-
trieval (except in January) in the global mean. This may
be partly due to the bias observed between the SCIA-
MACHY and OMI, dominated by the background concentra-
tions smaller than the detection limit of OMI and the strato-
spheric contribution to the column. The model generally un-
derestimates tropospheric NO2 columns in industrial areas
(Fig. 2); e.g. over eastern China, the eastern United States,
southwestern Europe, and southern Africa, suggesting that
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40% of the a priori emission. Note that the emission anal-
ysis is generally no longer sensitive to the initial error after
some (e.g. several weeks) assimilation cycles. Only the com-
bined total emission is optimized in the analysis. This is to
reduce the degree of freedom in the analysis and to avoid
the difficulty associated with estimating background errors
for each category source separately. The uncertainty in the
a posteriori emission is reduced if the analysis converges to
a true state, which is represented by the analysis spread in
the EnKF data assimilation. For instance, in January, the
mean analysis spread becomes about 30–40% of the initial
spread after some assimilation cycles over northern Europe,
the United States North, America, eastern China, India, and
northern Africa, demonstrating significant reductions in the
emission uncertainty through the data assimilation over these
areas. However, since the analysis spread is artificially in-
flated to the predefined constant value during the analysis
step in our system, this information is not used to measure
the a posteriori uncertainty. Instead, the standard deviations
of the estimated daily emissions during the analysis period
are used as the uncertainty information. Detailed analyses
on the analysis spread information will be performed using
more advanced inflation techniques in future studies (see also
discussions in Sect. 4.2).
The surface emission factor is analyzed and updated us-

ing observations at an analysis interval of every 100min (i.e.
every orbit cycle of OMI observations). This setting is use-
ful to reduce the time discrepancy between the observation
and the model in the data assimilation. Tropospheric NO2
shows a distinct diurnal variation, and any time discrepancy
will result in serious model error.

2.3.3 Super-observation approach

The spatial resolution of the OMI data (=13 km⇥ 24 km) is
much finer than that of the CHASER model grid (=2.8�).
Thus, there are large representativeness errors in the model
because of unresolved small-scale variations. To fill the spa-
tial scale gaps and to produce more representative data, a
super-observation approach has been developed. The spa-
tial resolution of the super-observation was set to be 2.5�, al-
most equivalent to the CHASER model resolution. Note that
the spatial distribution of the super-observation is constant,
whereas the CHASER uses a Gaussian (variable) grid. A
super-observation is generated by averaging all data located
within a super-observation grid cell;

y =
 

mX

l=1
wlyl

!, 
mX

l=1
wl

!

, (10)

where y is the super-observation concentration; yl is the con-
centration of individual data; wl is the weighting factor; m is
the number of observations within a super-observation grid.
The weighting factor for individual data, wl , is estimated as
the ratio of the coverage area by individual data pixels and the
total coverage area (sum of the coverage area by all data used

for generating a super observation) for a super-observation
grid; i.e. data with high coverage are assumed to be more re-
liable (i.e. largerwl). The same weighting factors are applied
for averaging the AK.
The measurement error for the super-observation is com-

puted as in Eskes et al. (2003),

�super,mean=
  

mX

l=1
wl�l

!, 
mX

l=1
wl

!!r
1�c

m
+c, (11)

in which the observation error (�l) is averaged over a grid
with the weight (wl), and the averaged error is multiplied
by the error correlation (c) among data. The error correla-
tion determines the quality of the super-observation, as illus-
trated in Fig. 1a. We apply 15% error correlation, although
there is no evidence for this value. Errors in for instance the
cloud, albedo and aerosol treatment in the NO2 retrieval are
typically correlated in space, but a quantitative number for
this correlation is difficult to estimate. The super-observation
measurement error also decreases as the number of obser-
vations used for the super-observation increases. A typical
number of OMI observations used for a super-observation
is about 120–250, resulting in about 60% reduction of the
mean measurement error.
The representativeness error is also considered if the

super-observation grid is not fully covered by OMI pixels.
A representativeness error as a function of the OMI cov-
erage was estimated based on grid cells which were well-
covered by OMI pixels (i.e. more than 90% coverage, ex-
cluding remote areas where the mean concentration is less
than 0.5⇥ 1015 molec. cm�2). For these well-covered cells,
we artificially decreased the coverage by randomly reducing
the number of observations used for constructing a super-
observation. Then, a representativeness error factor (frep) is
estimated based on the relationships between the coverage
area (↵, 0< ↵  1) and the super-observation concentration
as follow;

frep(↵) =
�����

 
1
m

mX

l=1
yl �

1
↵⇥m

↵⇥mX

l=1
yl

!, 
1
m

mX

l=1
yl

!�����. (12)

For coarse grid cells completely covered by OMI observa-
tion footprints (↵ = 1), this representativeness error is zero.
For cells covered by just one OMI pixel the representativity
error approaches the variability of individual measurements
around the grid cell mean. The mean representativeness error
factor averaged over the globe and over a month almost lin-
early increases as the coverage decreases, with a steeper in-
crease for coverage area less than 10% (Fig. 1b). The mean
averaged function is applied to estimate the representative-
ness error of each super-observation according to its cover-
age areas (↵):

�super,rep= frep(↵)⇥y (13)

where the area dependence of the representativeness error
function was neglected. Finally, the total super-observation
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Normal obs Super obs

NOx	  emission	  increments:	  11	  January	  2005
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•	  Emission	  es;ma;on	  based	  on	  state	  augmenta;on.	  

•	  Covariance	  among	  very	  weakly-‐related	  species	  is	  
neglected	  (i.e.,	  variable	  localiza;on.
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forming most calculations in parallel (Miyoshi and Yamane,
2007).

The LETKF transforms a background ensemble (xb
i ;i=

1,...,k) into an analysis ensemble (xa
i ;i= 1,...,k) and up-

dates the analysis mean, where x represents the model vari-
able; b the background state; a the analysis state; and k the
ensemble size. In the forecast step, a background ensemble,
xb
i , is globally obtained from the evolution of each ensemble

model simulation. The background ensemble mean, xb, and
its perturbations (spread), Xb, are thus estimated from the
ensemble forecast,

xb =
1

k

kX

i=1

xb
i ; Xb

i =xb
i �xb. (3)

These are N⇥k matrices, where N indicates the system di-
mension and k indicates the ensemble size.

In the analysis step, an ensemble of background observa-
tion vectors in the observation space, yb

i =H
�
xb
i

�
, is esti-

mated using the non-linear observational operator H . An
ensemble of background perturbations Yb = yb

i �yb is also
computed. The ensemble mean is then updated by

xa =xb+XbP̃a
�
Yb

�T
R�1

⇣
yo�yb

⌘
, (4)

where yo is the observation vector, R is the p⇥p observation
error covariance, P̃a is the local analysis error covariance in
the ensemble space. The new analysis ensemble perturbation
matrix in the model space Xa is simultaneously obtained by
transforming the background ensemble Xb. Further details
are described in Hunt et al. (2007) and Miyazaki et al. (2012).

EnKF approaches always have a spurious long dis-
tance correlation problem because of imperfect sampling
of the probability distribution due to limited ensembles
(Houtekamer and Mitchell, 2001). In complex chemical data
assimilation systems, a realistic estimation of the background
error distribution is very important (Singh et al., 2011; Mas-
sart et al., 2012). Boynard et al. (2011) demonstrated that
the spatial correlations estimated from ensemble simulations
are overestimated in the chemical model error covariance
fields, and suggested the need for special attention to avoid
too large correlation of fields distant from the location of the
observation. A covariance localization technique is used to
avoid possible degradation because of under sampling. We
assumed that observations located far from the analysis point
have larger errors and that those observations have less ef-
fect on the analysis (Miyoshi and Yamane, 2007). A correct
choice of ensemble size and correlation lengths is important
to improve the data assimilation performance, as will be dis-
cussed in Section 3.3.4

3.3 Experimental Setting

Three series of one-month data assimilation experiments
have been conducted, starting from the March 1, 2006, Jan-
uary 1, 2007, and July 1, 2007. The data assimilation cy-
cle is 100 min; e.g., each orbit cycle of polar-orbit satellites.

This setting is useful to reduce the time discrepancy (sam-
pling errors) between the observations and the model in the
data assimilation, given distinct diurnal variation in tropo-
spheric chemistry (Miyazaki et al., 2012). Figure 1 shows a
schematic diagram of the data assimilation process.

3.3.1 State vector

The state vector is chosen to include uncertain model aspects
that most effectively optimize the tropospheric chemical sys-
tem. First, emissions are a major source of uncertainty in
CTM simulations. The solution of a tropospheric chemical
model is only weakly influenced by the initial conditions,
because of the strong stiffness of tropospheric chemical pro-
cesses (Constantinescu et al., 2007; Lahoz et al., 2007). An
improvement could be achieved by an ensemble obtained by
perturbing various parameters of the model (emissions, re-
action rates, etc.). The EnKF can be extended to include
such parameters in the data assimilation process. A state vec-
tor which includes both the concentrations and the emissions
makes it possible to find the optimal values for the emissions,
which are linked to the concentrations by the CTM. In the
EnKF system, the background error covariance, estimated
from the ensemble CTM simulations, varies with time and
space, reflecting dominant atmospheric processes. The local
analysis increment for emissions thus reflects the complex
indirect relationship between concentrations and emissions
of related species.

The surface emissions of NO
x

, e(NO
x

), the surface
emissions of CO, e(CO), the lightning sources of NO

x

,
e(LNO

x

), and the concentrations of all the predicted (total
35) chemical species, c, are optimized at all the models grid
cells for each data assimilation cycle. The background en-
semble can be represented as follows,

xb
i =

2

664

cbi
e(NO

x

)bi
e(CO)bi

e(LNO
x

)bi

3

775. (5)

Although the data assimilation system simultaneously up-
dates emissions of NO

x

and CO, we treat the data indepen-
dently and do not include NO

x

-CO emissions covariance in
the background error matrix. This is to avoid the effects of
spurious multi-variate correlations in the background error
covariance, possibly developed because of limited ensem-
bles, and errors in both model and observations. However,
the forecasted atmospheric concentration of NO

2

and CO are
coupled chemically through their effect on the tropospheric
chemistry.

Based on sensitivity experiment results (see Section 4),
we have also applied the variable localization to improve
the analysis. This means the covariance among non- or
weakly-related variables is set to zero. This technique
allows us to neglect the correlations among variables
that may suffer significantly from spurious correlations.

Concentra.on

Background	  error	  covariance	  structure	  in	  CHASER-‐DAS
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Fig. 2. Schematic diagram of the correlation matrix between ob-
servations and the state variables. Satellite data used for the data
assimilation are listed in the left column. The model variables up-
dated during the data assimilation are listed in the top row. The blue
(gray) colour indicates that correlations between the observed vari-
ables and the model variables are considered (neglected using the
variable localization technique). See Sect. 3.3 for details.

Although the data assimilation system simultaneously up-
dates emissions of NOx and CO, we treat the data indepen-
dently and do not include NOx-CO emissions covariance in
the background error matrix. This is to avoid the effects of
spurious multi-variate correlations in the background error
covariance, possibly developed because of limited ensem-
bles, and errors in both model and observations. However, the
forecasted atmospheric concentrations of NO2 and CO are
coupled chemically through their effect on the tropospheric
chemistry.
Based on sensitivity experiment results (see Sect. 4), we

have also applied the variable localization to improve the
analysis. This means the covariance among non- or weakly-
related variables is set to zero. This technique allows us
to neglect the correlations among variables that may suf-
fer significantly from spurious correlations. The optimiza-
tion of the variable localization was based on a compar-
ison against satellite data. If the data assimilation signifi-
cantly deteriorated the agreement with at least one of the
data used for the data assimilation and the validation, vari-
able localization was applied to reduce the deterioration by
considering dominant chemical processes, as will be fur-
ther described in Sect. 4.2. The state vector structure used
is summarized in Fig. 2. With the technique, lightning NOx
sources are optimized using TES O3, OMI NO2, and MLS
O3 and HNO3 observations, whereas the covariance between
CO concentration and lightning NOx sources was set to be
zero, since their error correlation are not expected to con-
tain meaningful information. Similarly, OMI tropospheric
NO2 column data are used to update the concentrations
of NOy (=NOx +HNO3 +HNO4 + PAN+MPAN+N2O5)

species only, since the ensemble may not contain meaningful
information on the profile of other chemical species. For the
same reason, and related to their poor quality, MLS HNO3
data are only allowed to influence the NOy species in the
analysis. Similarly, MOPITT CO data affect the concentra-
tion of CO, hydrocarbons, and formaldehyde only. CO emis-
sions are optimized using MOPITT CO data only. The vari-
able localization is found to significantly improve the analy-
sis (see Sect. 4.2).

3.3.2 Parameter estimation

A diurnal variability is implemented for the NOx emissions
as in Miyazaki et al. (2012), depending on the dominant
source category for each area. The lightning NOx sources
vary in time and space, reflecting the variability in meteo-
rological fields. However, because a model error term is not
implemented during the forecast step, the background error
covariance can be continuously deflated and underestimated
during the data assimilation. To prevent covariance underes-
timation during the data assimilation, we have applied a co-
variance inflation to the analyzed emission as in Miyazaki
et al. (2012). The analyzed standard deviation (i.e., back-
ground error) is artificially inflated to a minimum predefined
value at each analysis step. This minimum value is chosen
as 30% of the initial standard deviation, based on sensitivity
experiments. Because of the absence of any forecast model
(i.e., model bias) to the emissions, and of the use of the back-
ground covariance inflation, initial bias in the a priori emis-
sions can be reduced gradually through the data assimilation
cycle using the state-augmentation approach, as discussed by
Lin et al. (2008).
The initial error is set to 40% of the a priori emis-

sions for surface emissions of NOx and CO. For lightning
NOx sources, the initial error is set to 60%, considering
large discrepancies among different estimates (Schumann
and Huntrieser, 2007). For the concentrations, it is set to
10%. Although the optimized emissions (i.e., the analysis
mean) and the uncertainty (i.e., the analysis spread) are not
strongly sensitive to the choice of the initial error after some
assimilation cycles (e.g. several weeks) because of the analy-
sis applied for both the mean and spread fields and the use of
the inflation, convergence is generally attained faster in the
case for larger initial uncertainties.

3.3.3 Observation error

The observation error covariance matrix contains the mea-
surement error provided by each retrieval. The representa-
tiveness error is also considered for the OMI NO2 and MO-
PITT CO super-observations as in Miyazaki et al. (2012).
The off-diagonal components are neglected for MLS data;
the observation error of one measurement is assumed to be
independent of the observation error of other measurements.
For TES O3 and MOPITT CO data, the full error covariance

www.atmos-chem-phys.net/12/9545/2012/ Atmos. Chem. Phys., 12, 9545–9579, 2012

Background	  error	  covariance	  structure	  in	  CHASER-‐DAS

The	  variable	  localiza;on	  (Kang	  et	  al.,	  2011)
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The	  relative	  impact	  (in	  %)	  of	  the	  NOx	  emission	  inversion	  (left)	  and	  the	  direct	  concentration	  
adjustment	  (right)	  through	  assimilation	  on	  the	  vertical	  O3	  profile

The	  simultaneous	  adjustment	  of	  the	  emissions	  and	  the	  concentrations	  is	  a	  powerful	  
approach	  to	  optimize	  the	  whole	  tropospheric	  profiles
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	  	  An	  important	  test	  for	  the	  quality	  of	  data	  assimilation	  is	  whether	  the	  differences	  between	  the	  innovations	  
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east Asia, biomass burning dominates the seasonal variations
of NO

2

concentrations, where the maximum and minimum
concentration occurs almost in the same months in the model
and retrievals, but with a mean negative bias of about 20-40
% in the model.

3.3 Diurnal variation

To improve the simulation, we applied pre-defined functions
for the diurnal variations of the surface NO

x

emissions. As
described in Section 2.2, we applied different diurnal vari-
ation profiles for different sources: maxima in the morning
and evening for anthropogenic sources; a rapid increase in
the morning and maximal emissions at mid-day for biomass
burning sources; and maximal emissions in the afternoon
for soil sources. By applying the diurnal variability scheme,
CHASER generally shows better agreements with the satel-
lite retrievals, with a global mean RMSE reduction of about
10-15 (30-40) % compared to the OMI (SCIAMACHY) re-
trievals. Similar results were demonstrated with other CTMs
(van Noije et al., 2006; Boersma et al., 2008b). The diurnal
variability scheme generally decreases the NO

2

concentra-
tion in the morning, but increases it in the afternoon in the
industry and biomass burning areas (Fig. 4). It improves the
agreement with DOMINO v2 data over Europe (Fig. 4a),
whereas the increased biomass burning emission during day-
time caused the NO

2

columns over Central Africa to be too
high compared to DOMINO v2 data (Fig. 4b). The diurnal
variability for the biomass burning source is highly variable
and uncertain. Since the diurnal variation of NO

x

emissions
strongly influences the model-observation difference, the im-
plementation of a realistic diurnal scheme is important to ob-
tain reasonable emissions (e.g., Jaeglé et al., 2005). The im-
pact of the diurnal scheme on surface emission estimations
will be further discussed in Section 6.

4 Optimizing the data assimilation system

4.1 Impact of super-observation

By using the super-observations instead of the normal ob-
servations, the data assimilation reveals a better agreement
with the assimilated DOMINO v2 data. An increasing spa-
tial correlation of 0.03-0.05 and a decreasing global mean
RMSE of 30-40 % were observed in an experiment with the
super-observations compared to normal observations. Im-
provements by the super-observation approach were com-
monly observed at both a resolution of the super-observations
(i.e., 2.5�) and at finer scale (i.e., 1�). In the case with the
normal observations, observation data contains large repre-
sentativeness error and are noisy especially in polluted areas,
which may prevent the analysis from efficiently and stably
reducing the systematic errors of the model (i.e., analysis in-
crements were sometime very noisy and large). The super-
observation approach generally provides more representative

data with a recued random error (e.g., than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NO

x

in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NO

x

source information to
remote places. As a result, the NO

x

emission and NO
2

con-
centration will have long distance correlations in some cases.
Remote observation will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the lo-
cation and season because of changes in the NO

2

lifetime
and wind patters. Second, a large ensemble size is essen-
tial to capture background error covariance structures prop-
erly, but also increases the computational cost. The analysis
improved by increasing the ensemble size to 32, whereas it
did not vary significantly by increasing it further. Thus, en-
semble size of (or greater than) 32 was preferred to remove
sampling errors. Finally, the use of the covariance inflation
(c.f., Eq. (4)) slightly improved the analysis together with the
conditional covariance inflation (c.f., Section 2.3.2), since it
reduces the underestimation in the background error covari-
ance. Although there is no clear optimal value, we employ 5
% covariance inflation.

The performance of the tropospheric NO
2

column data as-
similation with the optimized settings was evaluated from the
�2 test (e.g., Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The �2 is estimated from the ratio of the ac-
tual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF�
yo�H

�
xb

��
, the estimated error covariance in the obser-

vational space
�
HPbHT +R

�
, and the number of observa-

tions, m .

Y=
1p
m

�
HPbHT +R

��1/2

�
yo�H

�
xb

��
. (14)

Using this statistics, the �2 is defined as follow:

�2 =traceYYT , (15)

where H is the non-linear observational operator and the H
is the linearization of the observation operator. The mean
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east Asia, biomass burning dominates the seasonal variations
of NO

2

concentrations, where the maximum and minimum
concentration occurs almost in the same months in the model
and retrievals, but with a mean negative bias of about 20-40
% in the model.

3.3 Diurnal variation

To improve the simulation, we applied pre-defined functions
for the diurnal variations of the surface NO

x

emissions. As
described in Section 2.2, we applied different diurnal vari-
ation profiles for different sources: maxima in the morning
and evening for anthropogenic sources; a rapid increase in
the morning and maximal emissions at mid-day for biomass
burning sources; and maximal emissions in the afternoon
for soil sources. By applying the diurnal variability scheme,
CHASER generally shows better agreements with the satel-
lite retrievals, with a global mean RMSE reduction of about
10-15 (30-40) % compared to the OMI (SCIAMACHY) re-
trievals. Similar results were demonstrated with other CTMs
(van Noije et al., 2006; Boersma et al., 2008b). The diurnal
variability scheme generally decreases the NO

2

concentra-
tion in the morning, but increases it in the afternoon in the
industry and biomass burning areas (Fig. 4). It improves the
agreement with DOMINO v2 data over Europe (Fig. 4a),
whereas the increased biomass burning emission during day-
time caused the NO

2

columns over Central Africa to be too
high compared to DOMINO v2 data (Fig. 4b). The diurnal
variability for the biomass burning source is highly variable
and uncertain. Since the diurnal variation of NO

x

emissions
strongly influences the model-observation difference, the im-
plementation of a realistic diurnal scheme is important to ob-
tain reasonable emissions (e.g., Jaeglé et al., 2005). The im-
pact of the diurnal scheme on surface emission estimations
will be further discussed in Section 6.

4 Optimizing the data assimilation system

4.1 Impact of super-observation

By using the super-observations instead of the normal ob-
servations, the data assimilation reveals a better agreement
with the assimilated DOMINO v2 data. An increasing spa-
tial correlation of 0.03-0.05 and a decreasing global mean
RMSE of 30-40 % were observed in an experiment with the
super-observations compared to normal observations. Im-
provements by the super-observation approach were com-
monly observed at both a resolution of the super-observations
(i.e., 2.5�) and at finer scale (i.e., 1�). In the case with the
normal observations, observation data contains large repre-
sentativeness error and are noisy especially in polluted areas,
which may prevent the analysis from efficiently and stably
reducing the systematic errors of the model (i.e., analysis in-
crements were sometime very noisy and large). The super-
observation approach generally provides more representative

data with a recued random error (e.g., than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NO

x

in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NO

x

source information to
remote places. As a result, the NO

x

emission and NO
2

con-
centration will have long distance correlations in some cases.
Remote observation will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the lo-
cation and season because of changes in the NO

2

lifetime
and wind patters. Second, a large ensemble size is essen-
tial to capture background error covariance structures prop-
erly, but also increases the computational cost. The analysis
improved by increasing the ensemble size to 32, whereas it
did not vary significantly by increasing it further. Thus, en-
semble size of (or greater than) 32 was preferred to remove
sampling errors. Finally, the use of the covariance inflation
(c.f., Eq. (4)) slightly improved the analysis together with the
conditional covariance inflation (c.f., Section 2.3.2), since it
reduces the underestimation in the background error covari-
ance. Although there is no clear optimal value, we employ 5
% covariance inflation.

The performance of the tropospheric NO
2

column data as-
similation with the optimized settings was evaluated from the
�2 test (e.g., Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The �2 is estimated from the ratio of the ac-
tual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF�
yo�H

�
xb

��
, the estimated error covariance in the obser-

vational space
�
HPbHT +R

�
, and the number of observa-

tions, m .

Y=
1p
m

�
HPbHT +R

��1/2

�
yo�H

�
xb

��
. (14)

Using this statistics, the �2 is defined as follow:

�2 =traceYYT , (15)

where H is the non-linear observational operator and the H
is the linearization of the observation operator. The mean

Self-‐consistency	  check:	  Chi-‐square	  test

(Miyazaki	  et	  al.,	  2012b)
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Fig. 11. Vertical profiles of the NO2 concentrations (in ppbv) in (a) the morning (08:00 a.m.–10:00 a.m.) and (b) the afternoon (02:00 p.m.–
04:00 p.m.) and (c) the O3 concentrations (in ppbv) obtained during the INTEX-B campaign in March 2006. The black lines represent the
observed profile; the green lines represent the model simulation; the red line represents the data assimilation run. The error bars represent
the standard deviation of all the data within one grid cell.
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Fig. 12. (a) Mean vertical profiles of the NO2 concentrations
(µgm3) obtained during the DANDELIONS campaign in Septem-
ber 2006. The black lines represent the lidar observation; the green
lines represent the model simulation; the red line represents the data
assimilation run. The error bars represent the standard deviation of
all the data within one grid. Lower panels show scatter plots of NO2
concentrations (µgm3) for (b) the model simulation and (c) the data
assimilation run during the DANDELIONS campaign. The straight
lines represent linear regression lines for each level. Each line rep-
resents a linear fit to the points of the same colour, and the colours
represent the altitude level. The black line shows a linear fit to all
of the data.

our simulation (7.5 TgNyr�1) and estimates from chemical
observations (mostly 6–8 TgNyr�1) (e.g. Martin et al., 2007;
Sauvage et al., 2007), CHASERmay underestimate lightning
NOx sources and their-induced ozone production in the free
troposphere over Mexico and North America. Errors in the

stratospheric ozone transport into the troposphere may also
contribute to the ozone underestimation.

6 Sensitivity to the retrieval and model setting

Independent retrievals have different qualities, vertical sen-
sitivities, and overpass times. These differences may result
in obvious changes in the emission estimates. In addition,
the performance of the model plays an important role in the
emission estimates because it provides the relationship be-
tween surface fluxes and atmospheric concentrations. Thus,
it is important to consider the effects of these factors on the
estimated emissions. Here, we investigate the sensitivity of
the emission estimates to the retrieval product and model set-
tings. The sensitivities are shown for a season when the sen-
sitivity is largest (Fig. 13); January for the DOMINO 1 and
SCIAMACHY data assimilation experiments and July for the
lightning NOx production and the diurnal variability scheme
experiments, as described below.
By assimilating DOMINO v1 data instead of DOMINO

v2 data, the a posteriori emissions increase by 5–45% over
most areas (Fig. 13). The emission increase corresponds
to higher concentrations in DOMINO v1 as compared to
DOMINO v2. This difference is obvious in January over
eastern China, the eastern United States, Europe, northern
Africa, and Southeast Asia. The comparison indicates that
errors in the retrieval algorithm lead to large uncertainties in
top-down emissions. The assimilation of the SCIAMACHY
columns also shows significant differences especially over
South America, southern Africa, and Southeast Asia, with
relative changes of about 30–80%. The differences between
the emissions estimated using the OMI and SCIAMACHY
retrievals can be partly attributed to errors related to the
simplified description of the diurnal variability in the model

www.atmos-chem-phys.net/12/2263/2012/ Atmos. Chem. Phys., 12, 2263–2288, 2012
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Spatial	  correlation	  increment	  	  	  	  	  BIAS	  reduction	  rate	  	  	  	  RMSE	  reduction	  rate

Assimilated	  data	  	  	  	  Independent	  data (Miyazaki	  et	  al.,	  2012b)
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Observing	  System	  Experiments	  (OSEs)

(Miyazaki	  et	  al.,	  2012b)
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The	  obvious	  changes	  in	  the	  OH	  fields	  reveal	  the	  great	  potential	  of	  the	  multiple	  species	  
assimilation	  to	  influence	  the	  NOx	  emission	  inversion	  etc.

•Assimila;on	  of	  each	  species	  data	  set	  
has	  a	  strong	  influence	  on	  both	  
assimilated/non-‐assimilated	  species.	  
•The	  inter-‐species	  influences	  are	  ;ghtly	  
associated	  with	  the	  changes	  in	  OH	  
because	  of	  the	  chemical	  interac;ons	  in	  
the	  CO-‐OH-‐Ox-‐NOx	  system.

Influences	  on	  the	  oxidation	  capacity



�42

Simulation Assimilation

OMI

R=0.832  Bias=-0.110

NO2

R=0.697  Bias=-0.173

2282 K. Miyazaki et al.: Global NOx emissions

Europe East China

-10 -5 0 5 10
NO2 column

0

200

400

600
Nu

m
be

r

-20 -10 0 10 20 30
NO2 column

0
20

40

60

80

100

Nu
m

be
r

Model

Assimilation
bias= 1.18
stdev= 7.32

bias= 6.12
stdev= 9.38

Model

Assimilation
bias= 0.10
stdev= 2.36

bias= -1.22
stdev= 3.45

Fig. 10. Observation minus forecast (OmF) distributions of tro-
pospheric NO2 columns (in 1015 molec. cm�2) calculated from
the model simulation (black line) and the data assimilation run
(red line) over Europe (10�W–30� E, 35–60� N, left panel) and
eastern China (110–123� E, 30–44� N, right panel) for the period
16–30 January 2005. The numbers shown in the figures are the
mean value (bias) and the standard deviation (stdev) of the OmF
in 1015 molec. cm�2 for the model simulation (black) and for the
assimilation run (red).

the lowest part of the profile is well reproduced by the data
assimilation run, whereas the model simulation underesti-
mates it by about 30–40%. The assimilation of DOMINO
v2 (DOMINO v1) revealed a significant increase in surface
NOx emissions by a factor of about 1.3–1.6 (1.6–1.9) around
Mexico. Boersma et al. (2008b) showed a similar increase in
NOx emissions in their top-down estimate using DOMINO
v1 data by a factor of about 2.0 for Mexico. Above the
PBL, the NO2 concentrations decrease with height, mainly
due to he relatively short lifetime of the NOx family. Both
the model and assimilation run have lower NO2 concentra-
tions with differences of up to 0.1 ppbv when compared to
the observed value in the free troposphere. This discrepancy
may be attributed to errors in the model, such as too much
chemical loss of NO2, too small lightning productions, un-
realistic representations of the NOy species partitioning, and
atmospheric transport.
The comparison with lidar profiles obtained during the

DANDELIONS campaign is shown in Fig. 12. Cabauw is
surrounded by major populated areas within a distance of
a few 100 km, and the model grid concentration is consid-
ered to be representative for the observation data. Both the
simulated and the observed values show a rapid decrease in
NO2 concentrations within the PBL from the surface to about
600m (Fig. 12a). The assimilation improves the amount of
NO2 in the boundary layer, but provides concentrations that
are too high near the surface. The grid cells used for the
interpolation to the Cabauw tower partially cover the North
Sea, and have very different boundary layer heights, which
may explain the concentration gradient in the model profiles.
A positive intercept near the ground surface indicates that
the model has problems representing the measurement lo-
cation. The near-surface concentration will be sensitive to
the model resolution owing to fine-scale emission distribu-

Table 6. The 15-day mean (16–30th of each month) and regional
mean relative observation error for DOMINO v2. The relative error
was estimated by dividing the mean observation error by the mean
observation concentration for each super-observation. The mean
number of OMI pixels (per day per 1.0� ⇥1.0�) used for making
the super-observation is shown in brackets. Note that during the
calculation of the relative error, 0.1 ⇥1015 molec. cm�2 was added
to both the denominator and the numerator to avoid the divergence
caused by near-zero concentrations and to reduce the influence of
remote site data.

January April July October

E-China 1.1 (8.6) 0.9 (17.0) 0.5 (9.2) 1.0 (14.3)
Europe 1.1 (9.8) 1.5 (13.7) 1.0 (15.6) 1.5 (15.0)
E-USA 0.7 (10.5) 0.9 (13.4) 0.5 (17.3) 0.9 (16.5)
S-America 1.5 (5.4) 2.0 (6.2) 1.6 (20.5) 1.2 (7.9)
N-Africa 1.2 (22.7) 1.4 (17.2) 0.9 (15.9) 1.2 (20.2)
C-Africa 1.3 (10.8) 1.5 (14.9) 0.9 (19.7) 0.8 (10.1)
S-Africa 1.0 (6.3) 1.0 (13.6) 0.9 (25.5) 0.8 (15.9)
SE-Asia 1.0 (24.4) 0.9 (16.1) 1.9 (2.9) 1.3 (11.1)

tion and transport. The scatter plots (Fig. 12b, c) demonstrate
that the data assimilation also improves the variability of the
NO2 concentration especially below 500m. The slope is 0.46
in the case of the model simulation, whereas it is much larger
(0.99) in the data assimilation run. The assimilation does not
change the model profile in the free troposphere.
Changes in the NOx fields affect the concentrations of

various chemical species through chemical processes dur-
ing the forecast step. The impact on ozone is analyzed for
the INTEX-B campaign at Mexico City, by comparing sim-
ulated O3 fields with vertical O3 profiles measured from the
ozone sonde. Figure 11c shows that the assimilation of OMI
NO2 data reduces the discrepancy in O3 concentrations be-
tween the model and observations for the lower troposphere.
The enhanced NOx emissions by the data assimilation in-
crease chemical production of O3. Thus, NOx emissions
updated by the data assimilation have the potential to im-
prove the ozone chemistry in the model, although its impact
on the free tropospheric ozone is not obvious in this case.
The free tropospheric ozone is too low by about 10 parts per
trillion by volume (pptv) in both the simulation and the as-
similation. An underestimation of nearly 10 pptv was com-
monly observed for a GEOS-Chem model simulation over
the United States during the International Consortium on At-
mospheric Transport and Transformation (ICARTT) aircraft
campaign (Hudman et al., 2007). Hudman demonstrated
that an enhanced lightning NOx source (0.27 TgN over the
United States from 1 July to 15 August 2004) removed most
of the upper tropospheric ozone bias in their standard sim-
ulation (which had only 0.068 TgN from lightning). The
similar magnitude of the ozone underestimation and light-
ning source (0.061 TgN) in our CHASER simulation shows
that although the global total lightning source is similar for
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Fig. 4. Monthly mean diurnal variation of tropospheric NO2 columns (in 1015 molec. cm�2) obtained from the CHASER simulation with
(solid line) and without (broken line) the diurnal variability scheme for surface NOx emissions over (a) Europe (10�W–30� E, 35–60� N)
and (b) central Africa (10–40� E, 20� S–Equator) in July 2005. Tropospheric NO2 columns obtained from the satellite retrievals: DOMINO
v1 (blue), DOMINO v2 (red), and SCIAMACHY (green) are also plotted. The dotted line represents the diurnal variability factor used for
NOx emissions.

data with a reduced random error (e.g. than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NOx in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NOx source information to
remote places. As a result, the NOx emission and NO2 con-
centration will have long distance correlations in some cases.
Remote observations will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the loca-
tion and season because of changes in the NO2 lifetime and
wind patters. Second, a large ensemble size is essential to
capture background error covariance structures properly, but
also increases the computational cost. The analysis improved
by increasing the ensemble size to 32, whereas it did not vary
significantly by increasing it further. Thus, ensemble size
of 32 was preferred to remove sampling errors. Finally, the
use of the covariance inflation (cf. Eq. 4) slightly improved

Table 2. The performance of the data assimilation for differ-
ent parameters: the horizontal localization length (loc in km), the
covariance inflation (inf in%), and the ensemble number (num).
Five-day mean (averaged over 7–11 January 2005) tropospheric
NO2 columns from the assimilation and from DOMINO v2 are
compared. Corr is the global spatial correlation coefficient and
RMSE is the root-mean-square error in 1015 molec. cm�2. The
control (CTL) simulation was conducted with loc = 450, inf = 5, and
num= 32.

Corr RMSE

CTL 0.906 0.599

loc = 300 0.906 0.600
loc = 600 0.897 0.625
loc = 750 0.885 0.645
loc = 900 0.879 0.655

num= 16 0.897 0.612
num= 48 0.906 0.597
num= 64 0.905 0.597

inf = 0 0.904 0.605
inf = 10 0.904 0.607
inf = 15 0.905 0.589

the analysis together with the conditional covariance infla-
tion (cf. Sect. 2.3.2), since it reduces the underestimation in
the background error covariance. Although there is no clear
optimal value, we employ 5% covariance inflation.
The performance of the tropospheric NO2 column data as-

similation with the optimized settings was evaluated from the
�2 test (e.g. Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The �2 is estimated from the ratio of the
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Fig. 13. Ratios of the regional mean NOx emissions between the
standard assimilation experiments using the DOMINO v2 obser-
vations and experiments conducted using different satellite prod-
ucts: the DOMINO v1 retrieval (black bars) and the SCIAMACHY
retrieval (red bars) in January. Also shown are the emission ra-
tios between the standard assimilation experiments and experiments
conducted using different model settings: a 50% reduction of NOx
emissions by lightning (blue bars) and without the diurnal variabil-
ity scheme for the surface emissions (green bars) in July. The ratio
greater (less) than one indicates that the NOx emissions are higher
(lower) in the sensitivity experiments than in the standard assimila-
tion experiments.

along with systematic differences between the retrievals. We
note that the SCIAMACHY and DOMINO v1 products are
based on a very similar algorithm, and one could expect a
similar behavior for these products compared to DOMINO
v2. However, Fig. 13 shows that the emission ratios are quite
different in different regions. The difference may be largely
attributed to the simplified diurnal variability scheme espe-
cially over biomass burning regions. In addition, the poorer
spatial and temporal resolutions and less global coverage in
the SCIAMACHY retrieval than in the OMI retrieval may
also cause the differences.
The bias in NO2 columns is also influenced by NOx

processes in the upper troposphere in remote areas (Nape-
lenok et al., 2008). Boersma et al. (2005) suggested that
the contribution of lightning to the tropospheric NO2 col-
umn is strongest in the tropics, with a contribution of 0.4⇥
1015 molec. cm�2. We found that changes in the lightning
emissions have a large effect on the estimated NOx emis-
sions. Specifically, by reducing the global lightning pro-
ductions by half (from 7.5 to 3.75 TgN), the NOx emis-
sions increased by about 30–80% over the eastern United
States, northern Africa, and Southeast Asia in July, as sim-
ilarly demonstrated by Lin et al. (2010). The performance
of the mixing scheme may also affect the tropospheric NO2
columns. A too diffusive PBLmixing may result in an under-
estimation of the NO2 columns because of the reduction in
the NO2/NO ratio with height. As demonstrated in Sect. 5.3,
the model used shows an underestimation in the free tropo-
spheric NO2 concentration during the INTEX-B campaign.
This underestimation may lead to an overestimation of the es-
timated surface emissions in the data assimilation. Thus, re-

alistic representations of atmospheric processes in the model
are required to improve the emissions estimates. Simultane-
ous optimization of atmospheric (e.g. lightning) and surface
NOx sources will be performed in future studies.
The implementation of the diurnal variability scheme

largely influences the emission estimates (cf. Fig. 4). For ex-
ample, the emission was decreased from the a priori by 22%
over central Africa in the data assimilation with the diurnal
variability scheme, whereas it was increased by 30% in the
data assimilation with a constant emission. Similar differ-
ences between the experiments with and without the diurnal
variation scheme were also found over industrial areas (e.g.
over Europe). Although the estimated emission was largely
affected by the diurnal variability scheme, the prescribed di-
urnal variation profile is highly simplified, and it will not ac-
curately represent the temporal variations of emissions. An
alternative approach is required to determine the diurnal vari-
ability profile from analyses of multiple polar or future geo-
stationary satellite instruments.

7 Conclusions

We have developed an advanced data assimilation system to
estimate global NOx emissions. An ensemble Kalman fil-
ter approach was developed, in which the state augmenta-
tion method was employed to estimate daily global surface
emissions of NOx with a horizontal resolution of 2.8� us-
ing OMI tropospheric NO2 column retrievals. This approach
allows us to (1) accumulate observational information with
time and (2) reflect the non-direct relationship between the
emissions and tropospheric columns because of the use of the
background error covariance dynamically estimated from the
ensemble of CTM forecasts. A super-observation approach
was employed to produce data representative for a model grid
cell, which helped improve the assimilation analyses.
The inversion increased the NOx emissions in eastern

China, the eastern United States, southern Africa, and
central-eastern Europe, suggesting that the anthropogenic
emissions are mostly underestimated in the a priori emis-
sions that were constructed based on bottom-up inventories.
An obvious increase in the emission was observed over east-
ern China, with a factor of up to 1.7. A large increase in
NOx emissions also appears in the Highveld region of south-
ern Africa and over the eastern United States, with a factor
of about 1.4–2.5. Different from other industrial areas, the
regional mean a posteriori emissions were lower than the a
priori emissions over Europe, although the analysis incre-
ment showed obvious spatial variations (e.g. mostly posi-
tive over northwestern Europe and negative over eastern and
southwestern Europe). The data assimilation also corrected
the timing and the amplitude of the emissions from biomass
burning, with a large increase over central Africa (with a fac-
tor of 2) and Southeast Asia (with a factor of 2.5) in April
and over South America (with a factor of 2) in October. As a
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This	  study	  	  (uses	  chemically-‐related	  species	  obs)

O3,	  NO2,	  HNO3,	  CO	  obs	  
Constrain	  the	  chemical	  system

Reduce	  model	  errors	  and	  improve	  the	  
emission	  analysis

？

Top-‐down	  NOx	  emission	  estimates	  from	  satellite	  

Previous	  studies	  	  (only	  NO2	  obs	  used)

NO2	  obs

Obvious	  influences	  of	  
model	  errors

(e.g.,	  Mar;n	  et	  al.,	  2003;	  Jaeglé	  et	  al.,	  2005)	  
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Mul.ple	  species	  constraints	  on	  surface	  NOx	  emissions
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Northern Hemisphere

Tropics

Southern Hemisphere

Eastern China

South America

Central Africa
Southern Africa

Eastern US

Southeast Asia

Europe

 A priori
 MDA
 SDA
 REAS v2.1

25.3  29.2  30.4

11.3  13.6  14.8

2.67  3.11  3.62

3.81  5.26  5.03  5.87

0.57  0.67  0.80

4.61  4.65  4.77

0.31  0.52  0.53
1.61  2.33  2.54

4.25  4.79  4.85

1.33  0.83  0.80

•	  The	  mul.ple	  datasets	  assimila.on	  (MDA)	  provides	  addi;onal	  constraints,	  as	  a	  consequence	  of	  the	  NO2	  profiles	  being	  
modified	  by	  the	  non-‐NO2	  observa;ons.	  	  
•	  The	  large	  influences	  of	  non-‐NO2	  data	  highlight	  the	  large	  uncertainty	  (by	  58%	  on	  regional	  scale)	  in	  the	  NOx	  emissions	  
inverted	  from	  NO2	  observa.ons	  only	  (SDA:	  single	  dataset	  assimila.on).

(Miyazaki	  and	  Eskes,	  2013)

TgN
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	  Boeom-‐up:	  The	  lightning	  and	  subsequent	  NOx	  forma;on	  are	  determined	  with	  the	  help	  of	  
empirical	  parameteriza;ons.	  

Accurate	  es.mates	  of	  LNOx	  are	  important	  to	  understand	  varia.ons	  in	  NOx,	  the	  oxidizing	  
capacity,	  and	  several	  greenhouse	  gases	  (O3,	  CH4).

(From	  Folkert	  Boersma)

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Total lightning NO profile

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Total lightning NO profile

The LNOx parameterization in TM5

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

Spatial (2-D) and temporal distribution 
of lightning flashes

(Price	  and	  RInd,	  1992)

	  Larger	  uncertainly	  in	  the	  estimated	  total	  amount	  of	  NOx	  globally	  produced	  by	  lightning,	  i.e.	  
ranging	  from	  2	  to	  8	  TgN/yr.
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LNOx	  source	  increments	  from	  OSEs	  	  
90S-‐90N	  &	  1000-‐100hPa	  cross-‐sec;on
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	  The	  combined	  use	  of	  the	  mul;ple	  datasets	  with	  different	  ver;cal	  sensi;vi;es	  etc	  
facilitates	  the	  es;ma;on	  of	  the	  ver;cal	  LNOx	  profile	  and	  to	  dis;nguish	  between	  the	  
surface	  NOx	  emissions	  and	  LNOx	  sources.	  
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The	  widely	  used	  lightning	  parameterisa;on	  based	  on	  the	  C-‐shape	  assump;on	  
underes;mates	  the	  source	  amounts	  in	  the	  upper	  troposphere	  and	  overes;mates	  

the	  peak	  source	  height	  in	  the	  upper	  troposphere	  by	  up	  to	  1	  km	  over	  land.

Seasonal	  varia.on	  of	  the	  LNOx	  sources	  	  
(Boeom-‐up	  and	  Top-‐down)
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Table 4. The global spatial correlation (Corr), global mean difference (Bias), and global mean root-mean-square error (RMSE) of the three-
monthly mean tropospheric O

3

columns (TOCs) for the OMI/MLS data of December–February (DJF) and June–August (JJA) in 2007. The
results of the CTM simulation and data assimilation for 30S�–30N� are shown.

DJF JJA
Corr Bias RMSE Corr Bias RMSE

CTM 0.85 1.92 4.16 0.92 1.41 3.26
Assim. 0.86 -0.55 2.85 0.92 0.19 2.59

Table 5. Similar to Table 3, but lists the LNOx sources obtained from the control data assimilation run (Control), with a 15% addition of
artificial OMI NO

2

bias (w/ OMI bias), with the TES O
3

bias correction (TES bias corr.), without the OMI cloud-covered observations (w/o
OMI cloud), with the SST data for 1997 (year 1997 SST), with 20 % increases in the convective mass flux (+20% convection), with 20%
increases in the a priori errors of the LNOx source and the surface NO

x

emissions (+20% LNOx err. and +20% SNOX err.), and with 15%
increases in the a priori values of the LNOx sources (+15% LNOx prior). The mean bias (standard deviation) obtained from all the estimates
are also listed. The total bias due to all terms is computed as a random addition of the individual biases. See the text for details.

January July
NH TR SH GL NH TR SH GL

Control 0.78 3.99 1.39 6.15 4.69 2.99 0.50 8.18

w/ OMI bias 0.87 3.97 1.46 6.31 4.61 3.08 0.50 8.18
TES bias corr. 0.68 3.79 1.36 5.83 4.19 2.74 0.29 7.21
w/o cloud OMI 0.76 4.04 1.31 6.09 4.13 2.89 0.29 7.33
year 1997 SST 0.76 3.89 1.37 6.03 4.71 3.06 0.51 8.26
+20% convection 0.80 3.76 1.37 5.89 4.27 2.99 0.50 8.09
+20% LNOx err. 0.83 3.75 1.32 5.90 4.59 2.93 0.51 8.03
+20% SNOx err. 0.81 3.77 1.27 5.85 4.58 2.83 0.50 7.90
+15% LNOx prior 0.83 4.10 1.48 6.41 5.29 3.16 0.57 9.02

Standard dev. 0.05 0.14 0.07 0.21 0.35 0.13 0.10 0.53
Total bias 0.16 0.47 0.20 0.66 1.06 0.38 0.31 1.58

Table 6. The mean ozone concentration bias (in ppbv) between the CHASER simulations and the global ozonesonde observations for January
2007 in the NH (25�N–90�N) and for July 2007 in the tropics (TR, 25�S–25�N) and the SH (90�S–25�S). The CHASER simulation results
using the a priori emissions sources (A priori), the LNOx sources (LNOx), and the LNOx sources and surface NO

x

emissions (L+SNOx)
are shown. The results from the CHASER-DAS simultaneous assimilation are also listed (DAS).

NH in July TR in January SH in January
A priori LNOx L+SNOx DAS A priori LNOx L+SNOx DAS A priori LNOx L+SNOx DAS

750–450 hPa -12.3 -11.7 -0.2 -1.8 18.5 20.2 16.6 16.4 -4.1 -2.0 -2.8 -4.9
450–200 hPa -6.8 -5.9 0.7 1.3 8.9 9.5 3.3 3.3 9.9 7.4 3.4 -1.0
200–90 hPa 19.8 19.7 4.8 4.5 42.2 34.9 21.7 10.4 219.5 136.2 149.5 45.3

Error	  es.ma.on

(	  and	  more	  error	  sources	  in	  the	  chemical	  schemes	  etc	  (e.g.,	  Stavrakou	  et	  al.	  2013)

12 Miyazaki et al.: Lightning NO
x

production estimation

6.3 Validation using forward CTM simulations

The O
3

concentrations simulated using the estimated light-
ning and surface sources in CHASER are used to indirectly
validate the performance of the estimated sources, as summa-1095

rized in Table 6. In the validation, the multiplication factors
for the LNOx sources and the surface emissions estimated
from the assimilation are used as inputs to forward CHASER
simulations without adjusting the chemical concentrations by
assimilation. The validation is made when lightning is ac-1100

tive; e.g. for July in the NH and for January in the tropics
and the SH. The ozonesonde observations from 39 locations
were taken from the World Ozone and Ultraviolet Data Cen-
ter (WOUDC)/Southern Hemisphere Additional Ozoneson-
des (SHADOZ) database, as in Miyazaki et al., (2012a). By1105

using the estimated LNOx sources instead of the sources
predicted by the model parameterization, CHASER simula-
tions showed improved agreement with independent global
ozonesonde observations. The improved agreement includes
13% reductions in the negative bias in the middle/upper tro-1110

posphere for the NH, 17% reductions in the positive bias in
the upper troposphere for the tropics, and about 25–50% re-
ductions in the positive bias in the middle/upper troposphere
for the SH. The CHASER simulation showed further im-
proved agreement with the ozonesonde observations, by us-1115

ing the surface NO
x

emission data from the multiple data as-
similation instead of the emission inventories, together with
the estimated LNOx sources. This reduced the ozone bias
in the NH and the tropics throughout the troposphere. These
results demonstrate the improved consistency of the concen-1120

trations and emissions through the multiple datasets assim-
ilation and confirm the quality of the estimated sources as
inputs to CTM simulations. We note that the concentration
adjustment by the simultaneous data assimilation play an im-
portant role in further improving the ozone fields especially1125

in the upper troposphere and the lower stratosphere.

6.4 Comparisons with previous estimates

Based on various estimation results, Schumann and
Huntrieser (2007) have provided a best estimate of 5±3 TgN
for the annual global LNOx source. Our estimate of 6.3 TgN1130

is well within the range of the best estimate. The mean anal-
ysis spread for the annual global source was estimated at 0.9
TgN. From the systematic satellite and model uncertainties
listed in Table 5 we obtain an additional error estimate of
about 1 TgN per year (0.7 in January, 1.6 in July). This is1135

also within the range of the recent best estimate and supports
the conclusion of Schumann and Huntrieser (2007). More
recently, Murray et al. (2012) and Stavrakou et al. (2013)
estimated a global annual LNOx source of 6±0.5 TgN and
3.3–5.9 TgN, respectively. These estimates are also close to1140

our estimate. In spite of the good agreement in the estimates
of the annual global source, the LNOx source varies signif-
icantly with season and year, and differences will be more

pronounced when comparisons are made regionally. Detailed
comparisons on monthly and regional scales including those1145

seasonal variations remain an important topic for future stud-
ies.

6.5 Error estimation

Uncertainties in the observation, the model, and the assimi-
lation settings lead to the total error of 0.66 TgN for January1150

and 1.58 TgN for July (Table 5). The total mean, range and
standard deviation on the global LNOx source from these es-
timates are 6.05±0.21 TgN (range 5.83–6.41 TgN) for Jan-
uary, and 8.02±0.53 TgN (range 7.21–9.02 TgN) for July.
The standard deviation of the estimated LNOx source gen-1155

erated by varying the assimilated data was estimated at 0.96
TgN for January and 1.23 TgN for July (Table 3). However,
we note that because of differences in the relative importance
of individual assimilated datasets for adjusting the LNOx
source (e.g. leaving out the OMI retrieval changes the source1160

estimation results considerably), the standard deviation es-
timated by varying the assimilated data can not be used to
estimate the error bar for the estimated source.

Nevertheless, the large spread of the different estimates in-
dicates that estimates of the LNOx source distribution and1165

the global LNOx source amount are highly sensitive to the
satellite data used, the model and the assimilation frame-
work. Subsequent use of new measurements is expected to
influence the source estimation to a considerable degree. Fur-
ther developments in measurements and data assimilation1170

will be important to reduce the uncertainty in the LNOx
source estimation.

7 Conclusions

The global source of lightning-produced NO
x

(LNOx) is es-
timated from an assimilation of multiple chemical species1175

based on an ensemble Kalman filter approach. NO
2

, O
3

,
HNO

3

, and CO measurements obtained from multiple satel-
lite instruments (OMI, MLS, TES, and MOPITT) provide
comprehensive constraints on estimates of the global LNOx
source. This approach has the potential to reduce the influ-1180

ence of model errors on the LNOx source estimation by si-
multaneously optimizing various aspects of the chemical sys-
tem, including the surface emissions of NO

x

and CO as well
as the concentrations of 35 chemical species. Errors in these
model fields other than the LNOx sources introduce addi-1185

tional model–observation mismatches into the inversion and
degrade the LNOx source estimation. In most previous top-
down estimates, only LNOx sources were optimized from
NO

2

measurements. In such cases, the LNOx sources may
be overcorrected since analysis increments are introduced to1190

compensate for various sources of model error. Substantial
differences in the estimated LNOx sources are obtained be-
tween the single-parameter (LNOx) inversion and the com-

c.f.	  	  Schumann	  and	  Huntrieser	  (2007)	  have	  provided	  a	  best	  estimate	  of	  

6.3	  ±	  1.4	  TgN
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• 大気汚染物質排出量の長期変動!
• オゾン濃度変動要因の理解!
• 気候モデル・気象再解析への適用

nm,k tð Þ~ 1
m

Xs~ m{1ð Þ=2

s~{ m{1ð Þ=2

n tzsð Þ

where nm,k51 becomes the input for the second iteration of the filter, and so on. The
transfer function of such a filter with k$3 is essentially a step function that when
applied on a linear system (e.g. the signal can be modeled as the sum of signals
containing different frequency components) passes frequencies below a specified
value (referred to as the separating frequency). The effective separating frequency (p)
is approximately equal to 0:5

m|k1=2 [21]. Thus, by choosing an appropriate k and m, one
can remove specific high frequency variations from data.

In this work, we examine the multi-year variability of NO2 that is a result of
applying a KZ filter of 6 iterations of a 103-day moving average (n103,6) to log-
transformed (see Supplementary Information) daily data in each grid cell. This
removes variations with periodicity less than approximately 1.4 years from the ori-
ginal signal. We choose 1.4 years as our effective separating frequency to minimize
convolution of seasonal variability with long-term variability, which can occur if the
effective filter width overlaps with frequencies close to one year. The effectiveness of

the separation is tested by the covariance of filtered data and its’ residual
(r5n2n103,6). For our dataset, this is generally less than 3% of the total variance in the
original signal (Figure S2). Thus, with seasonality effectively removed, variability in
the filtered signal is driven by multi-year (here defined as time-scales greater than 1.4
years) changes in emissions and/or meteorology.

In Figure 3(top) we show observed monthly average concentrations and their
12-month running mean averaged over the eastern United Kingdom, Belgium,
Luxembourg, and the Netherlands (see white box in Figure 2(top left)). We have
also overlaid the corresponding average KZ-filtered signal. The absolute value of
the KZ-filtered signal is offset because, as discussed in Supporting Information -
‘‘Spectral Analysis: Log Transformation’’, the product of the long-term and higher
variability signals reproduces the total signal. The KZ-filtered signal and 12-
month running mean follow a similar pattern overall; there is an indication of a
downward trend in NO2 concentration in both curves, but year-to-year changes
are more difficult to discern from the 12-month running mean. NO2 concentra-
tions in this part of northern Europe lack deterministic variability such as sea-
sonality. The main driver of NO2 fluctuations is high frequency synoptic
variability (timescales less than 3 months), which is apparent in the monthly

Figure 4 | Calculated changes in NO2 concentration during the OMI observation time period (October 2004-December 2010) resulting from
environmental policy (‘business-as-usual’) (left) and from the 2008–2009 economic recession (right) derived from the regression model (Eqn. 1). The
change in NO2 is given in units of percent relative to October 2004. Calculated NO2 changes that were not statistically significant (T-test, p50.05 two-
tailed) were set to zero (white) in the maps. Black diamonds show the locations of cities in Europe with population greater than 500,000. Green boxes
show the locations of the (1) Compostilla II power station in northwest Spain, (2) Hamitabat power station northwest of Istanbul, and (3) Ostraleka
power station in northeast Poland.

Figure 5 | The time series of industrial production index for the 27 European Union countries, and low-pass filtered NO2 tropospheric column (n103,6)
averaged over the considered domain (right). The dashed line indicates the average estimated mid-date of the recession time period over Europe. The
scatter plot (left) shows the recession period change in industrial production index relative to the previous year plotted against the calculated yearlong
recession period change in NO2 (crecession) relative to the previous year for countries in Europe.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 265 | DOI: 10.1038/srep00265 5

(Castellanos and Boersma, 2012)

A. Hilboll et al.: Long-term NO2 changes over megacities 4149

Fig. 3: Mean annual VCDtrop NO2 normalized to 1996, for the regions Central East coast U.S.,
Western Europe, U.S., East Central China, Japan, Middle East, and North Central India. Values
for 1996-2002 are from GOME, values from 2003-2011 from SCIAMACHY measurements.
The first five regions are defined as in Richter et al. (2005). The y-axis has been modified to
make relative changes above and below 1 more comparable (values larger than one have been
scaled to y �� 2�1/y).

39

Fig. 2.Mean annual VCDtrop NO2 normalized to 1996 for the regions central East Coast US, Western Europe, US, east-central China, Japan,
Middle East, and north-central India. Values for 1996–2002 are from GOME; values from 2003–2011 are from SCIAMACHYmeasurements.
The first five regions are defined as in Richter et al. (2005). The y-axis has been modified to make relative changes above and below 1 more
comparable (values larger than 1 have been scaled to y 7! 2� 1

y ).

Fig. 4: NOx emissions from the EDGAR v4.2 database, normalized to 1996, for the regions
Central East coast U.S., Western Europe, U.S., East Central China, Japan, Middle East, and
North Central India. The y-axis has been modified to make relative changes above and below 1
more comparable (values larger than one have been scaled to y �� 2�1/y). Since the published
version 4.2 of the EDGAR database contains erroneous emission data for the year 2008 in Iran,
this plot uses an updated, so far unpublished version (G. Maenhout, personal communication,
2012) for the Middle East region.

40

Fig. 3.NOx emissions from the EDGAR v4.2 database, normalized to 1996, for the regions central East Coast US, Western Europe, US, east-
central China, Japan, Middle East, and north-central India. The y-axis has been modified to make relative changes above and below 1 more
comparable (values larger than 1 have been scaled to y 7! 2� 1

y ). Since the published version 4.2 of the EDGAR database contains erroneous
emission data for the year 2008 in Iran, this plot uses an updated, so far unpublished, version (G. Maenhout, personal communication, 2012)
for the Middle East region.

emission control measures and the resulting increases and de-
creases in the observed VCDtrop impact not only pollution
hotspots, but regions as a whole. Over east-central China, for
example, the fraction of areas with exceptionally high NO2
levels has been significantly increasing during the observing
period, leading to a shrinking area which can be considered
as being polluted at lower levels. Over the same period, the

central Eastern US has seen systematic increases in the frac-
tion of low or moderately polluted areas.

www.atmos-chem-phys.net/13/4145/2013/ Atmos. Chem. Phys., 13, 4145–4169, 2013

(Hilboll et al, 2013)

大気組成の長期再解析

各地のNO2濃度

ヨーロッパNO2濃度と経済活動

対流圏オゾン
成層圏オゾン
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大気組成ー気象統合解析
• 放射過程を介した結合 

• 大気組成-PV(U)関係 

• 気象場不確定性→背景誤差

（気温→反応係数、風→輸送）
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For	  further	  improvements	  in	  the	  emission	  es.mates

vs. Surface NOx emission, 950 hPa
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OSSEs	  with	  a	  careful	  considera;on	  of	  the	  complex	  chemical	  interac;ons	  and	  measurement	  
characteris;cs	  for	  various	  species	  (incl.	  the	  seasonality)	  will	  support	  future	  instrumental	  

design	  to	  improve	  the	  emission	  analysis.
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Past & future - O3 

TEMPO 

Courtesy Jhoon Kim, 
Andreas Richter 

GEMS 

Sentinel-4 

•モデルの高分解能化 

•マルチスケール解析 

•衛星・地上観測の統合 

•インベントリーとの統合 

•環境政策へ活用

新たな観測データ

の利用に向けて



•大気組成データ同化システム CHASER-DAS を開発 

•衛星観測データを統合した長期再解析を実施 

•大気汚染・大気組成変動・気候研究への提供を計画 

•更なる観測データの利用、 将来の観測計画への貢献 

•宇宙開発センターなどとの連携 

•気象解析への貢献も重要

まとめと今後の課題


