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1 Introduction

Sequential data assimilation is an on line approach in which a state at each time

step is estimated as the observation is obtained. Most of sequential data assimila-

tion techniques are based on Bayesian approach. The information of observations

is incorporated into the system model by considering a posterior probability den-

sity function (PDF) derived from a prior PDF, where the prior PDF is obtained

using past data and a system model. The particle filter (PF) (Gordon et al., 1993;

Kitagawa, 1993, 1996) is one of such sequential data assimilation algorithms. The

PF approximates PDFs at each time step by an ensemble of a large number of

particles. An estimation of a posterior PDF is obtained by resampling with re-

placement from a prior ensemble. Since the PF does not require assumptions of

linearity or Gaussianness, it is applicable to general nonlinear problems includ-

ing cases with nonlinear observations which other algorithms such as the ensemble

Kalman filter (Evensen, 1994; Burgers et al., 1998) do not provide good estimation.

However, the PF often encounters a problem called ‘degeneration’, which does

not occur in the EnKF. As resampling procedures are applied recursively, most of

the particles are replaced by particles that fit the observed data better, and the

posterior PDF is eventually represented by only a few of the particles among the

members of the initial ensemble. This reduces the validity of ensemble approxima-

tion especially in applying to high-dimensional systems. Although this problem

could be avoided by increasing the number of particles in the ensemble, the in-

crease of the number of particles requires a prohibitive computational cost at each

forecast step.

In order to overcome this problem, we have devised another technique, the

merging particle filter (MPF). In the MPF, a filtering procedure is performed by

merging several particles of a prior ensemble, which is rather similar to the genetic

algorithm (e.g., Goldberg, 1989). This merging procedure is performed such that

the first and second moments of a posterior PDF is preserved. The MPF allows

the degeneration problem to be avoided without unduly increasing the number of

particles and thus the MPF is applicable to higher-dimensional systems. Moreover,
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the primary advantage of the PF over the EnKF is inherited; that is, the MPF is

applicable even to cases in which the relationship between a state and observed

data is nonlinear. In our previous paper (Nakano et al., 2007), the basic idea of

the MPF is given. The purpose of this paper is to briefly review the algorithm of

the MPF and to discuss some properties of the MPF.

2 Particle filter

In the following, we consider a state space model as:

xk = Fk(xk−1, vk) (1a)

yk = Hk(xk) + wk (1b)

where the vectors xk and yk indicate the state of a system and observed data at a

discrete time T = tk (k = 1, . . .), respectively, and the vectors vk and wk denote

system noise and observation noise, respectively. The operator Fk represents the

temporal evolution from time tk−1 to time tk according to the simulation. The

operator Hk projects the state vector xk to the observation space.

The PF considers a PDF of a state xk. The PDF is approximated by an ensemble

consisting of a large number of discrete samples called ‘particles’. Suppose that a

filtered distribution at time T = tk−1, p(xk−1|y1:k−1), is approximated by particles

{x(1)
k−1|k−1, x

(2)
k−1|k−1, · · · , x

(N)
k−1|k−1} as

p(xk−1|y1:k−1) ≈
1

N

N∑
i=1

δ
(
xk−1 − x

(i)
k−1|k−1

)
(2)

where δ is Dirac’s delta function, and N is the number of particles in the ensemble.

Here we expressed p(xk−1|y1, · · · , yk−1) as p(xk−1|y1:k−1). We obtain an ensemble

approximation of the forecast distribution of the state at the next observation time

T = tk as

p(xk|y1:k−1) ≈
1

N

N∑
i=1

δ
(
xk − x

(i)
k|k−1

)
(3)

where x
(i)
k|k−1 is given by Fk(x

(i)
k−1|k−1, v

(i)
k ) for each particle i. This procedure is

called the forecast step.

From the forecast distribution p(xk|y1:k−1) and observed data yk, we obtain an
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approximation of the filtered PDF p(xk|y1:k):

p(xk|y1:k) =
p(xk|y1:k−1) p(yk|xk)∫

p(xk|y1:k−1) p(yk|xk)dxk

≈ 1∑
j p
(
yk|x(j)

k|k−1

) N∑
i=1

p
(
yk|x(i)

k|k−1

)
δ
(
xk − x

(i)
k|k−1

)

=

N∑
i=1

wiδ
(
xk − x

(i)
k|k−1

)
(4)

where p(yk|x(i)
k|k−1) is the likelihood of x

(i)
k|k−1 given the data yk and the weight wi

is defined as

wi =
p(yk|x(i)

k|k−1)∑
j p(yk|x(j)

k|k−1)
. (5)

This is called the filtering step.

We then obtain a new ensemble {x(1)
k|k, · · · , x

(N)
k|k } by resampling the forecast

ensemble {x(1)
k|k−1, · · · , x

(N)
k|k−1} with replacement. The new ensemble may contain

multiple duplicates originating from the same particle in the forecast ensemble.

The resampling is performed such that the number of copies for a particle x
(i)
k|k−1

is nearly proportional to the weight wi. Denoting the number of copies for a

particle x
(i)
k|k−1 as mi, mi satisfies

mi ≈ Nwi

(∑
mi = N ; mi ≥ 0

)
(6)

for each x
(i)
k|k−1. Using Eq. (6), Eq. (4) can be further approximated as

p(xk|y1:k) ≈
N∑

i=1

mi

N
δ
(
xk − x

(i)
k|k−1

)

=
1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

.

(7)

Thus, the newly generated ensemble approximates the filtered PDF p(xk|y1:k).

Equation (7) has the same form as Eq. (2). We can then recursively repeat the

above procedure from Eq. (2) to Eq. (7) to incorporate a sequence of observed

data into the system model.

3 Merging particle filter

The MPF is a variant of the PF. In the MPF, each particle of a filtered ensemble

is generated by combining multiple particles drawn from the forecast ensemble,
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which is rather similar to the genetic algorithm. When the number of particles to

be combined is denoted by n, it is necessary to draw n×N samples from the forecast

ensemble. to obtain an ensemble: {x̂(1,1)
k|k , · · · , x̂

(n,1)
k|k , · · · , x̂

(1,N)
k|k , · · · , x̂

(n,N)
k|k }. The

sampling of the n × N samples is performed such that a particle x
(i)
k|k−1 is drawn

with a probability wi like the PF described in the previous section. It should be

noted that a subset {x̂(j,1)
k|k , · · · , x̂

(j,N)
k|k } affords an ensemble approximation of the

filtered PDF as

p(xk|y1:k) ≈
1

N

N∑
i=1

δ
(
xk − x̂

(j,i)
k|k
)

(8)

because copies of each particle x
(i)
k|k−1 is contained with a ratio proportional to wi in

the subset. We then make a new ensemble consisting of N particles {x(1)
k|k, · · · , x

(N)
k|k }.

Each particle in this new ensemble is generated as a weighted sum of n samples

from the n × N sample set as:

x
(i)
k|k =

n∑
j=1

αjx̂
(j,i)
k|k . (9)

In order that the newly generated ensemble approximately preserves the mean and

covariances of the filtered PDF, the weights αj are set to satisfy

n∑
j=1

αj = 1 (10a)

n∑
j=1

α2
j = 1 (10b)

where each αj is a real number. When the merging weights satisfy Eq. (10a), the

mean of the PDF approximated by the new ensemble {x(1)
k|k, · · · , x

(N)
k|k } becomes

∫
xk

1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

dxk =
1

N

N∑
i=1

x
(i)
k|k =

1

N

N∑
i=1

n∑
j=1

αjx̂
(j,i)
k|k

=
n∑

j=1

[
αj

∫
xk

1

N

N∑
i=1

δ
(
xk − x̂

(j,i)
k|k
)

dxk

]

≈
n∑

j=1

αj

∫
xk p(xk|y1:k) dxk

=

∫
xk p(xk|y1:k) dxk = µk|k

(11)
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where µk|k is the mean of the filtered PDF p(xk|y1:k). In addition, if the merging

weights αj satisfy Eq. (10b), the covariances given by the new ensemble become

∫
(xk − µk|k)(xk − µk|k)

T 1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

dxk

=

∫
xkx

T
k

1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

dxk − µk|kµ
T
k|k

=
1

N

N∑
i=1

x
(i)
k|kx

(i) T
k|k − µk|kµ

T
k|k

=
1

N

N∑
i=1

n∑
j=1

α2
j x̂

(j,i)
k|k x̂

(j,i)T
k|k − µk|kµ

T
k|k

=

n∑
j=1

α2
j

∫
xkx

T
k

1

N

N∑
i=1

δ
(
xk − x̂

(j,i)
k|k
)

dxk − µk|kµ
T
k|k

≈
∫

xkx
T
k p(xk|y1:k) dxk − µk|kµ

T
k|k = Σk|k

(12)

where Σk|k is the covariance matrix of p(xk|y1:k). Here, we used an approximation

as
1

N

N∑
i=1

(x̂
(j1,i)
k − µk|k)(x̂

(j2,i)
k − µk|k)

T ≈ 0 (if j1 �= j2),

which is justified because the two sets of samples {x̂(j1,1)
k|k , · · · , x̂

(j1,N)
k|k } and {x̂(j2,1)

k|k , · · · , x̂
(j2,N)
k|k }

are obtained through independent random sampling and would not correlate with

each other. The ensemble obtained using Eq. (9) therefore gives an approximation

of p(xk|y1:k) preserving the mean and covariances as

p(xk|y1:k) ≈
1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

. (13)

4 Discussion

The MPF approximately preserves the mean and covariance (i.e., the first and

second moments) of the filtered PDF, and it asymptotically preserves the mean and

covariance as the number of particles approaches infinity. However, the moments

of higher order than the second moment are not preserved and thus the MPF does

not ensure that the shape of the filtered PDF is preserved. It should be noted that

the moments of higher order than the second moment are not preserved even if the
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number of merged particles n is increased. Here we assume that the dimension of

xk is one for simplicity. The m-th moment of xk is then given as∫
(xk − μk|k)m p(xk|y1:k) dxk

≈
∫

(xk − μk|k)m 1

N

N∑
i=1

δ
(
xk − x

(i)
k|k
)

dxk

=
1

N

N∑
i=1

(x
(i)
k|k − μk|k)m =

1

N

N∑
i=1

m∏
l=1

(
n∑

jl=1

αjl
x̂

(jl,i)
k|k − μk|k

)

≈ 1

N

N∑
i=1

n∑
j=1

αm
j

(
x̂

(j,i)
k|k − μk|k

)m

=
n∑

j=1

αm
j

∫
(xk − μk|k)m 1

N

N∑
i=1

δ
(
xk − x̂

(j,i)
k|k
)

dxk

≈
n∑

j=1

αm
j

∫
(xk − μk|k)m p(xk|y1:k) dxk

(14)

where we use an approximation as

1

N

N∑
i=1

m∏
l=1

(
x̂

(jl,i)
k|k − μk|k

)
≈ 0 (unless j1 = j2 = · · · = jm).

In order to preserve the m-th moment even after taking the weighted sum as Eq.

(9), a set of weights {αj}n
j=1 must satisfy

n∑
j=1

αm
j = 1. (15)

On the other hand, if the set of real numbers {αj}n
j=1 satisfy Eq. (10b), 0 < |αj| < 1

are satisfied for all j and thus

|αj|2 > |αj |m (16)

if an integer m is larger than 2. Since Eq. (16) is satisfied for all j,

n∑
j=1

α2
j >

n∑
j=1

αm
j . (17)

If Eq. (10b) is satisfied and m > 2,

n∑
j=1

αm
j < 1. (18)
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Therefore, if Eq. (10b) is satisfied, Eq. (15) can not be satisfied when m > 2. This

means that there does not exist a set of weights {αj}n
j=1 which preserves the second

moment and moments of higher order than the second moment simultaneously.

In implementing the MPF, the number of merged particles n can be chosen

almost arbitrarily. However, n must be equal to or greater than 3. If n = 1, the

weight α1 must be 1 in order to satisfy both Eq. (10a) and Eq. (10b), which is

obviously equivalent to the normal PF. If n = 2, then one of merging weights

must be 1, and the other must be 0, so as to satisfy both Eq. (10a) and Eq. (10b).

This setting is also equivalent to the normal PF, which means that the merging

procedure does not make sense. Although there is no upper limit for n, it is not

necessary to set n to be large.

Although the filtered ensemble in the MPF may contain duplicate particles, the

number of the duplicate particles is much smaller than that for the PF. If the

weights are set such that no two weights are equal to each other and that none

of the weights are zero, the number of the duplicate particles can be remarkably

reduced in comparison with the PF. In the MPF, two duplicate particles in the

filtered ensemble {x(1)
k|k, · · · , x

(N)
k|k } can be generated only from two identical sets

of n particles in the forecast ensemble, if duplicate particles are not contained in

the forecast ensemble {x(1)
k|k−1, · · · , x

(N)
k|k−1}. When the probability that a particle

x
(i)
k|k−1 is drawn from the forecast ensemble is wi (0 ≤ wi < 1), the probability

that a sequence of n particles {x(i1)
k|k−1, · · · , x

(in)
k|k−1} is drawn is

∏n
j=1 wij . Thus,

the number of duplicate particles contained in the filtered ensemble is, at most,

approximately N × (maxwi)
n for the MPF, while it is N × max wi for the PF.

When n is equal to or greater than 3, there are infinite allowable sets of merging

weights: {α1, · · · , αn}. Although there is no definitive way to determine the values

of the weights, it would be better to set them such that no two weights are equal to

each other and that none of the weights are zero in order to maintain the diversity

of the ensemble. However, characteristics of an ensemble obtained as a result of

the MPF depend to some extent on how the set of merging weights is given. For

example, if one of the weights is nearly equal to 1 and the other weights are nearly

equal to zero, the MPF shows a similar behavior to the PF; that is, the shape of a

filtered PDF is mostly preserved but the degeneration problem tend to be serious

(Nakano et al., 2008).

5 Summary

The merging particle filter (MPF) provides an ensemble approximation of the

filtered PDF. Each member of a filtered ensemble is generated from a weighted sum
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of multiple samples from the forecast ensemble such that the mean and covariance

of the filtered distribution are approximately preserved. The MPF can not preserve

the shape of the filtered PDF because the moments of higher order than the second

moment are not preserved. However, when one merging weights is set to be near

1 and the other weights are set to be small, it shows s similar behavior to the PF;

that is, the shape of a filtered PDF is mostly preserved although the degeneration

problem could be serious.
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