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Estimation of a Long-Term Variation of a Magnetic-Storm Index
Using the Merging Particle Filter

Shin’ya NAKANO†∗a), Nonmember and Tomoyuki HIGUCHI†∗, Member

SUMMARY The Dst index is the most popular measure of a scale of
magnetic storms, and it is widely used as a monitor of the conditions of the
Earth’s magnetosphere. Since the Dst index contains contributions from
multiple magnetospheric phenomena, it is important to distinguish each of
the contributions in order to obtain meaningful information about the con-
ditions of the magnetosphere. There have been several efforts which mod-
eled temporal evolution of the Dst index empirically, and these empirical
models considers some contributions separately. However, they take only
short-term varations into accout, and contributions from phenomena which
show long-term variations are neglected. In the present study, we have de-
veloped a technique for estimating the component of long-term variations
of the Dst index using solar wind data and a nonlinear empirical model. The
newly-developed technique adopts an algorithm which is similar to the par-
ticle filter. This algorithm allows an on-line processing of a long sequence
of Dst data, which would enable a real-time estimation of system variables
in a nonlinear system model. The estimates of the long-term variations
can be used for accurate estimation of other contributions to the Dst index,
which would provide credible information about the conditions of the mag-
netosphere. The framework proposed in the present study could be applied
for the purpose of continuous real-time monitoring of the environment of
the magnetosphere.
key words: merging particle filter, time-series analysis, geomagnetic data

1. Introduction

Magnetic storm is a global phenomenon which causes great
decrease in the magnetic field on the ground at low and mid
latitudes. The degree of the decrease is commonly measured
by Dst index [1], which is derived from magnetic-field data
at four different ground observatories at mid latitudes. The
Dst index represents a deviation of the magnetic field at low
latitudes from a normal state. The value of Dst is thus near
zero in a normal state. During magnetic storm, it decreases
typically by 50–100 nT and by hundreds of nT for strong
magnetic storm. The Dst index is calculated for every hour,
and its hourly data have been accumulated and published for
about 50 years since 1957.

It is widely accepted that the decrease of Dst index dur-
ing magnetic storm is caused by an electric current flow-
ing westward in the magnetosphere, which is called the ring
current (Fig. 1; see also, e.g., [2]). It is also well known
that an electric current flowing eastward on the outer bound-
ary of the magnetosphere, which is called the magnetopause
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Fig. 1 Schematic picture of the sun-earth system which is focused on in
the present paper. This picture is a projection onto the Earth’s equatorial
plane.

current, also has a significant effect on the value of Dst as
depicted in Fig. 1. The enhancement of the magnetopause
current causes the increases of Dst, while the enhancement
of the ring current causes the decrease of Dst. Hence, the
variations of Dst are mostly a mixture of the ring current ef-
fect (RC effect) and the magnetopause current effect (MPC
effect).

The variations of the ring current and the magne-
topause current are closely associated with the conditions
of the solar wind, which streams outward from the sun, al-
though these two currents depend on different parameters of
the solar wind. Burton et al. [3] have empirically modeled
the temporal evolution of the Dst index using some solar
wind parameters. They decomposed the Dstvariations into
the RC effect and the MPC effect, and then consider the
temporal variation of each of two effects separately. They
assumed the MPC effect to be given as a function of one of
the solar-wind parameters, the solar-wind dynamic pressure
Pd. The RC effect was described as a nonlinear evolutive
system which requires the solar-wind electric field as an in-
put.

Their model (hereafter we will refer to it as the
Burton’s model) was constructed under the assumption that
all the variations of Dst are due to the RC effect and/or the
MPC effect, and they assumed other contributions to the Dst

index to be constant, that is, independent from time. How-
ever, it is not trivial whether a variation of another contri-
bution is really negligible or not. In particular, a long-term
magnetic field variation which can not be represented by the
Burton’s model might make some significant influence over
the Dst index. As a matter of fact, we can estimate whether
another factor may significantly contribute to Dst variations
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on the basis of the Burton’s model itself using long-term
data of the Dst index and the solar wind.

The purpose of the present paper is to show how we
can evaluate another contribution to Dst variations and to
estimate how large such a contribution is. The estimation of
another contribution is conducted using the merging particle
filter (MPF) [4]. This algorithm is applicable to nonlinear
system models like the Burton’s model and it is effective
for applying to a very long-term sequence of data because
it is an on-line algorithm which can process long-term data
sequentially.

2. Base Model of the Temporal Variation of the Dst In-
dex

The Dst index is influenced by both the RC effect and the
MPC effect. Burton et al. took an approach to model the
MPC effect as the first step and then eliminate it from Dst to
obtain a pure RC effect:

DRC (nT) = Dst − b
√

Pd + c (1)

where DRC represents the pure RC effect, Pd denotes the
dynamic pressure of the solar wind which is observed by
spacecraft out of the magnetosphere, and b and c are the
parameters which should be given a priori. The second term
in the right-hand side of this equation, b

√
Pd, corresponds

to the MPC effect, and the third term c corresponds to other
contributions than the RC effect and the MPC effect. This
means that the Burton’s model assumes that the MPC effect
is given by b

√
Pd and that other contributions is given by

the constant c. The temporal evolution of the pure RC effect
DRC can then be modeled as follows:

ΔDRC

Δt
= Q − DRC

τ
(2)

where the parameters Q and τ should be given a priori.
The original paper by Burton et al. provided the opti-

mal value of each constant coefficient in Eqs. (1) and (2).
However, the optimal values have been revised by O’Brien
and McPherron (2000) [5] using a much longer term of the
data. According to them, the parameters b and c in Eq. (1)
can be given as constants:

b = 7.26 nT/nPa−1/2 (3)

c = 11 nT. (4)

The parameter Q, which represents the evolution of DRC,
can be given as follows:

Q (nT/hour) = −4.4 H(E − 0.49) (5)

where H denotes the Heaviside function as

H(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ≥ 0

0 otherwise.
(6)

The variable E is given as

E = vBs (7)

where v is the solar-wind velocity and Bs is the southward
component of the solar-wind magnetic field. Both v and Bs

can be observed by spacecraft out of the magnetosphere as
well as Pd. Finally, τ is given as follows:

τ (hours) = 2.4 exp

(
9.74

4.69 + H(E)

)
. (8)

Once an initial value of the Dst index is given, we can
predict the evolution of Dst sequentially using the model
given by Eqs. (1) and (2) as long as the solar-wind data are
available. Hence, by comparing the prediction with the ac-
tual Dst values, we can validate the Burton’s model and the
values of coefficients obtained by O’Brien and McPherron
and evaluate contributions from other factors than the RC
effect and the MPC effect. In the following sections, we
perform the prediction by putting the solar-wind data into
the Burton’s model.

3. Modeling of the System

3.1 System Model

In order to perform the prediction of the Dst index, we con-
struct a state space model on the basis of the Burton’s model.
We decompose a state of Dst at time t into three components
as

Dt
st = Dt

RC + Dt
MPC + Dt

res (9)

where Dt
st denotes a model Dst value at time t, Dt

RC denotes
the RC effect on Dst, Dt

MPC denotes the MPC effect, and Dt
res

denotes a residual effect other than the RC and MPC effects
on Dst, which corresponds to −c in Eq. (1) and is of our main
interest in the present paper.

According to Eqs. (2) and (5), we describe a transition
of a state of DRC for an hour as

Dt
RC = Dt−1

RC − 4.4 H(Et−1 − 0.49) − Dt−1
RC

τt
. (10)

The MPC effect Dt
MPC is assumed to be given as a function

of Pt
d as

Dt
MPC = b

√
Pt

d. (11)

As for a transition of a state of Dres, two models are con-
sidered in order to evaluate whether a variation of Dres is
negligible or not. One model assumes Dres to be constant as

Dt
res = −11. (12)

according to Eq. (4). The other model is given as

Dt
res ∼ N(Dt−1

res , 0.01). (13)

We also consider state transitions of the two solar-wind
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parameters Pd and E. As described above, these two param-
eters can be observed by spacecraft. However, spacecraft
basically observe local structures of the solar wind and the
local structures observed by spacecraft do not necessarily
agree with large-scale solar-wind structures which controls
the conditions of the Earth’s magnetosphere. Then, we as-
sume that ‘effective’ Pd and E are uncertain and we include
them in variables to be estimated. Thus, it is necessary to
model the state transitions of them. The state of Pd at time t
is assumed to obey a log-normal distribution as

log Pt
d ∼ N(log Pt−1

d , 0.02) (14)

because the solar-wind dynamic pressure Pd can not be
less than zero. The variance of Pd was determined by a
maximum-likelihood method using a set of OMNI2 hourly
solar-wind data P̄d. The OMNI2 solar-wind data were pro-
vided on the OMNIWeb database of National Space Sci-
ence Data Center, NASA (http://omniweb.gsfc.nasa.gov/)
and they are also referred to Sect. 3.2. A transition of E
is represented using a Cauchy distribution in order to allow
large jumps which are sometimes observed in E. We assume
that Et obey the Cauchy distribution with a location param-
eter of Et−1 and a scale parameter of 1. The scale parameter
for the transition of E are given subjectively. However, since
it is associated with short-term variations, it does not make
any significant effects on the estimates of Dres. In addition,
we assume that τ is time-dependent. We give τt as

τt = 2.4 exp

(
9.74

4.69 + H(Et−1)

)
(15)

where

Et−1 ∼ N(Et−1, 0.25). (16)

3.2 Observation Model

From the system described above, we can obtain observa-
tions of three variables. Space craft observations provide
the data of Pd and E at each hour, although these data are
sometimes lost. We define the observation model of Pd and
E at each hour as

P̄t
d ∼ N(Pt

d, 1) (17)

Ēt ∼ N(Et, 4) (18)

where P̄t
d and Ēt denote the observations of Pd and E at

each hour, respectively. In this study, we refer to the OMNI2
solar-wind hourly data as the data of P̄t

d and Ēt. Although
the original OMNI2 data do not contain Ēt data, we gener-
ate Ēt data from data of the solar-wind velocity v̄t and the
southward component of the solar-wind magnetic field B̄t

z
as Ēt = v̄t B̄t

z. We can also use the values of the Dst index at
each hour. The data of the Dst index are provided by Data
Analysis Center for Geomagnetism and Space Magnetism,
Kyoto University. The observation model of the Dst index is
defined as follows:

D̄t
st = Dt

st + wt
Dst

= Dt
RC + b

√
Pt

d + Dt
res + wt

Dst

(19)

where D̄t
st denotes the observed Dst index and wt

Dst is the
observation error contained in the Dst data which obeys the
normal distribution N(0, 25).

3.3 State Space Model

For the convenience in the following section, we define a
state vector as follows:

xt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dt
RC

Dt
res

Pt
d

Et

τt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Since the MPC effect Dt
MPC is assumed to be given as a func-

tion of Pt
d, Dt

MPC is not included in a state vector. Using this
state vector, we can represent a transition of a state xt just
by a conditional distribution as

xt ∼ p(xt |xt−1). (21)

where p(xt |xt−1) can be defined by combining Eqs. (10)–
(16). We also define an observation vector yt as

yt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
D̄t

st

P̄t
d

Ēt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (22)

However, the data of P̄t
d and Ēt are sometimes missing as

mentioned above. In such cases, we redefine an observation
vector yt as

yt =
(

D̄t
st

)
. (23)

In either case, the observation model described in Sect. 3.2
can be written as

yt ∼ p(yt |xt). (24)

Fig. 2 Dependencies among the variables considered in the present
study. The variables which can be observed are indicated by black boxes
with white letters.
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In ordinary cases, p(yt |xt) can be defined by combining
Eqs. (17)–(19). If the data of either P̄t

d or Ēt are missing,
only Eq. (19) is evaluated; that is, p(yt |xt) is determined
from Eq. (19).

Figure 2 illustrates the dependencies among the vari-
ables considered in the present study. The variables included
in the state vector xt are enclosed within a shaded box. The
observable variables are indicated by black boxes with white
letters.

4. Algorithm

We conduct the estimation of the value of the state vector xt

at each hour from the observations yt on the basis of the sys-
tem and observation models described in the previous sec-
tion. As the system model described above is nonlinear, the
estimation of a state is done using the merging particle fil-
ter (MPF) [4], which is applicable even to nonlinear system
models. The MPF is an algorithm based on the particle fil-
ter (PF) [6]–[8]. The MPF provides an approximation of the
posterior probability density function given a sequence of
observations {y1, . . . , yT }, like the PF. However, it is much
more efficient than the normal PF. In the following, the al-
gorithm of the MPF is briefly reviewed.

In the MPF, a probability density function (PDF) p(x)
is approximated by a set of N samples {x(1), . . . , x(N)} as also
done in the particle filter as

p(x) ≈ 1
N

N∑
i=1

δ
(
x − x(i)

)
. (25)

Each sample is called a ‘particle’ and an approximation of
a PDF using a set of particles is called a ‘particle approxi-
mation’. In the normal PF, a set of particles for representing
a posterior PDF contains many duplicates of the same parti-
cle, which causes highly redundant computational cost. On
the other hand, in the MPF, each particle is generated by
merging multiple samples in order to maintain the diversity
of particles. This allows us to reduce the redundant compu-
tational cost.

We sequentially obtain particle approximations of a
predictive PDF p(xt |y1:t−1) and a filtered PDF p(xt |y1:t) at
each time step as follows. Suppose that a PDF p(xt−1|y1:t−1),
which is a posterior PDF given the observations until time
t − 1, is approximated by a set of particles {x(i)

t−1|t−1}Ni=1 as

p(x) ≈ 1
N

N∑
i=1

δ
(
xt−1 − x(i)

t−1|t−1

)
. (26)

If we obtain a set of particle where each particle x(i)
t|t−1 is a

sample taken from a conditional distribution p(xt |x(i)
t−1|t−1),

this set of samples {x(i)
t|t−1}Ni=1 offers a particle approximation

of a predictive PDF at the next time, p(xt |yt−1), as

p(xt |y1:t−1) ≈ 1
N

N∑
i=1

δ
(
xt − x(i)

t|t−1

)
. (27)

An approximation of the filtered PDF p(xt |y1:t) can be
obtained by incorporating an observation yt into the particle
approximation of a predictive PDF {x(i)

t|t−1}Ni=1 as follows:

p(xt |y1:t)

=
p(xt |y1:t−1) p(yt |xt)∫

p(xt |y1:t−1) p(yt |xt)dxt

≈ 1∑
j p

(
yt |x( j)

t|t−1

)
N∑

i=1

p
(
yt |x(i)

t|t−1

)
δ
(
xt − x(i)

t|t−1

)

=

N∑
i=1

wiδ
(
xt − x(i)

t|t−1

)
(28)

where p(yt |x(i)
t|t−1) is the likelihood of x(i)

t|t−1 given the data yt,
which can be calculated according to Eq. (24). The weight
wi is defined as

wi =
p(yt |x(i)

t|t−1)∑
j p(yt |x( j)

t|t−1)
. (29)

Although Eq. (28) offers an approximation of the filtered
PDF p(xt |y1:t), we generate a new set of particles {x(i)

t|t }Ni=1
which represents the filtered PDF in the following form:

p(xt |y1:t) ≈
1
N

N∑
i=1

δ
(
xt − x(i)

t|t
)
. (30)

In the MPF, each particle for representing the filtered PDF
is obtained by combining multiple particles taken from a
set of particles for representing the predictive PDF; that
is, a particle x(i)

t|t is obtained from multiple samples from

{x(i)
t|t−1}Ni=1. Here the number of particles to be combined is

taken as 3. Then, in order to obtain a set of N particles
{x(i)

t|t }Ni=1, it is necessary to draw 3N samples with weights of

wi {x̂(1,1)
t|t , · · · , x̂(3,1)

t|t , · · · , x̂(1,N)
t|t , · · · , x̂(3,N)

t|t }. Each particle in

the new set, {x(i)
t|t }, is generated as a weighted sum of 3 sam-

ples contained in this 3N samples as:

x(i)
t|t =

n∑
j=1

α j x̂
( j,i)
t|t . (31)

The set of weights {α j}nj=1 in Eq. (31) is set to satisfy

n∑
j=1

α j = 1 (32a)

n∑
j=1

α2
j = 1 (32b)

where α j ∈ R for all j. Eqs. (32a) and (32b) ensures that
the new set of particles {x(i)

t|t }Ni=1 has asymptotically the same
average and covariance of the filtered PDF p(xt |y1:t) for
N → ∞.
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Fig. 3 Difference between the model Dst and the actual Dst for the case
that Dres is assumed to be constant.

5. Result

We estimated the temporal evolution of the state vector xt

for the period from 1995 to 2005. The estimation was
performed for the period from 1995 because many of the
OMNI2 solar-wind data are missed before 1995. An esti-
mate of xt at each time step was provided from the ensem-
ble mean of particles {x(i)

t|t }Ni=1, which approximates a filtered
PDF p(xt |y1:t). The number of particles N used for the esti-
mation was 1600. In order to evaluate whether the temporal
evolution was successfully estimated or not, we compare the
Dst evolution estimated using the MPF with a sequence of
the real Dst data.

Figure 3 shows difference between the real Dst data
and the model Dst for the case that Dres is assumed to be
constant where positive means that the model Dst is larger
than the actual Dst. Although the difference sometimes be-
comes larger than 20 nT, it mostly varies with the amplitude
of about 10 nT during the period from 1995 to 2005. How-
ever, some long-term variation is also seen in this figure.
In particular, the model Dst is prominently smaller than the
actual Dst around the middle of 1999. Figure 4 compares
the model Dst for constant Dres with the actual Dst during
one year from January 1999 to December 1999. The gray
line indicates the actual Dst and the black line indicates the
model Dst. From the end of May to July, the model Dst un-
derestimated the actual Dst by about 10 nT.

Figure 5 compares the model Dst for the case that Dres

is variable according to Eq. (13) with the actual Dst for the
period from January 1999 to December 1999. The gray
line indicates the actual Dst and the black line indicates the
model Dst as in Fig. 4. The model Dst well agree with the
actual Dst. Indeed, while the log-likelihood of the model
based on Eq. (12) was about −1.8 × 10−8, the log-likelihood
of the model based on Eq. (13) was about −1.5 × 10−5. The
dashed line shows the estimated Dres. The residual effect
Dres exceeds zero from the middle of the May to the middle
of the September, while the empirical model assumes that
Dres is negative (Dres = −11 nT). This result means that the
residual effect is more variable than assumed by the previ-
ous studies. The Burton’s model sometimes overestimate
Dres and sometimes underestimate Dres by tens of nT, which

Fig. 4 Comparison between the model Dst (black solid line) and the ac-
tual Dst (gray solid line) from January 1999 to December 1999 for the case
that Dres is assumed to be constant.

Fig. 5 Comparison between the model Dst (black solid line) and the ac-
tual Dst (gray solid line) from January 1999 to December 1999 for the case
that Dres is modeled according to Eq. (13). The estimated Dres (see text) is
also shown in a dashed line.

inevitably causes misestimation of DRC. As described in
Introduction, Dst varies typically by 50–100 nT during mag-
netic storms. Thus, the improvement of the estimation of
Dres is not negligible in order to evaluate the RC effect using
the Dst index.

6. Concluding Remarks

We have presented a new technique to estimate the contri-
bution from an unconsidered factor in the Burton’s model
which describes temporal evolution of a measure of mag-
netic storms, the Dst index. The estimation is performed
using the merging particle filter which is applicable to non-
linear system models like the Burton’s model. By consid-
ering a long-term variation in addition to the RC effect and
the MPC effect which are already considered in the Burton’s
model, the agreement between the model Dst value and the
actually observed Dst value is greatly improved. This fact
means that a long-term residual effect Dres significantly con-
tributes to the Dst index. In order to accurately estimate the
temporal variation of the RC effect DRC , we need to accu-
rately estimate the variation of Dres. Thus, the technique
which we presented above would serve as an important tool
for analyzing the temporal evolution of DRC index.

Recently, continuous monitoring of magnetic storm ac-
tivity becomes important because it is associated with the
environment of the magnetosphere where many spacecraft
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operate and with the conditions of the ionosphere. Thus,
a real-time monitor of magnetic storm activity and the ring
current is important. In the present study, we adopted the
merging particle filter (MPF). The MPF is an on-line algo-
rithm applicable for processing even real-time data and it en-
ables an on-line estimation of the long-term residual effect
Dres. This on-line estimation provides valuable information
for real-time estimation of the ring current variation DRC .
Thus, the framework adopted in the present paper could be
useful for a real-time monitoring of the magnetospheric en-
vironment using the real-time edition of the Dst index.
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